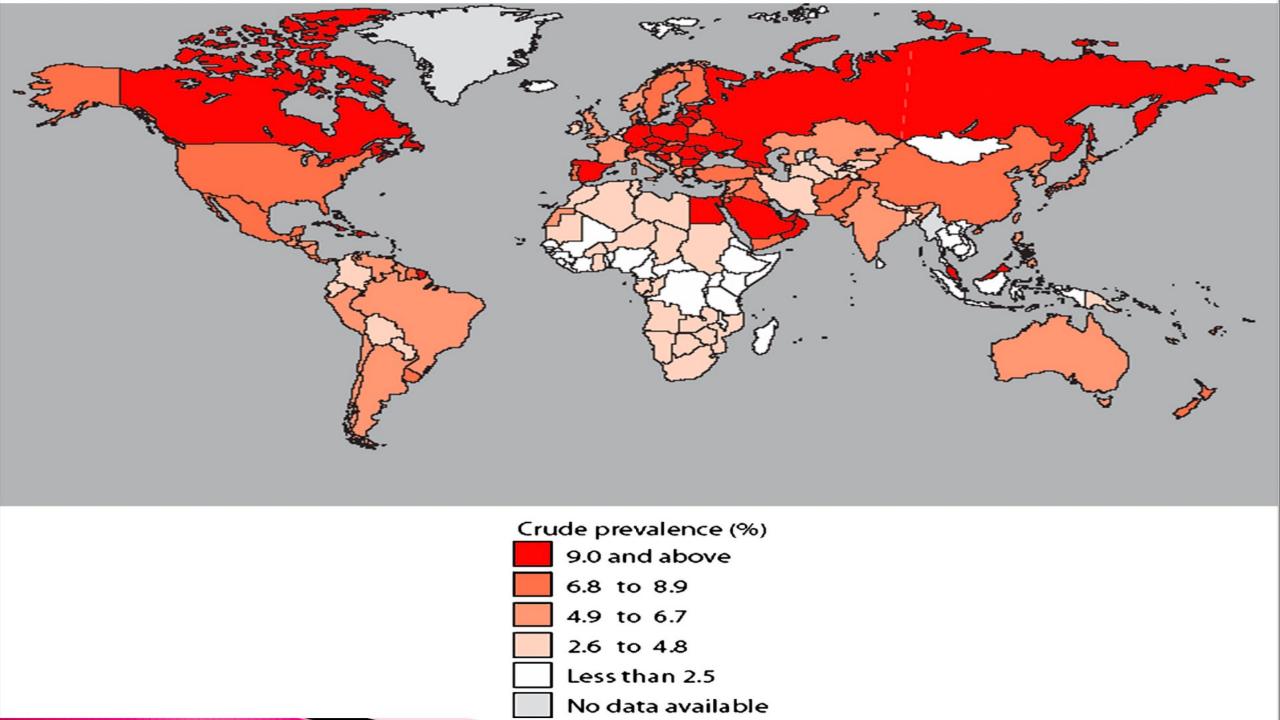
## Diabetes Mellitus

**Dr. Gary Mumaugh** 




- Diabetes Mellitus is combination of two Latin words
  - Diabetes means "to flow through"
  - Mellitus means "honey like"
- Diabetes mellitus (DM) is a group of diseases characterized by high levels of blood glucose resulting from defects in insulin production, insulin action, or both.
- The term diabetes mellitus describes a metabolic disorder of multiple etiologies characterized by chronic hyperglycemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both.
- The effects of diabetes mellitus include long—term damage, dysfunction and failure of various organs.

### **Diabetes Long Term Effects**

- The long-term effects of diabetes mellitus include progressive development of the specific complications of retinopathy with potential blindness, nephropathy that may lead to renal failure, and/or neuropathy with risk of foot ulcers, amputation, Charcot joints, and features of autonomic dysfunction, including sexual dysfunction.
- People with diabetes are at increased risk of cardiovascular, peripheral vascular and cerebrovascular disease.

#### **Burden of Diabetes**

- The development of diabetes is projected to reach pandemic proportions over the next 10 years.
- International Diabetes Federation (IDF) data indicate that by the year 2025, the number of people affected will reach 350 million 90% of these people will have Type 2 diabetes.
- In most Western societies, the overall prevalence has reached 4-6%, and is as high as 10-12% among 60-70-year-old people.
- The annual health costs caused by diabetes and its complications account for around 6-12% of all health-care expenditure.



#### **Diabetes Mellitus**

- Definition: metabolic disorder characterized by hyperglycemia due to an absolute or relative lack of insulin or to a cellular resistance to insulin
- Major classifications
  - 1) Type 1 Diabetes
  - 2) Type 2 Diabetes
  - 3) Gestational Diabetes
  - 4) Pre Diabetes
  - 5) Secondary Diabetes

# There are 5 Major Types of Diabetes

#### **Type 1 Diabetes**

- Usually diagnosed in childhood
- Affected by hereditary
- Sometimes there are no symptoms
- Imperative to inject insulin daily because the body makes little or no insulin
- Often called 'insulin- dependent' group
- Patients with type 1 diabetes need insulin daily to survive



#### **Type 2 Diabetes**

- Most common
- Usually occurs in adulthood but diagnosis is increasing in the younger generation
- Affects many children
- Body is incapable of responding to insulin
- Rates rising due to increased obesity and failure to exercise and eat healthy



#### **Gestational Diabetes**

- Blood sugar levels are high during pregnancy in women
- Women who give birth to children over 9 lbs.
- High risk of type 2 diabetes and cardiovascular disease



- A form of glucose intolerance that is diagnosed in some women during pregnancy.
- Gestational diabetes occurs more frequently among African Americans, Hispanic/Latino Americans, and American Indians. It is also more common among obese women and women with a family history of diabetes.
- During pregnancy, gestational diabetes requires treatment to normalize maternal blood glucose levels to avoid complications in the infant.
- After pregnancy, 5% to 10% of women with gestational diabetes are found to have type 2 diabetes.
- Women who have had gestational diabetes have a 20% to 50% chance of developing diabetes in the next 5-10 years.

#### **Pre-Diabetes**

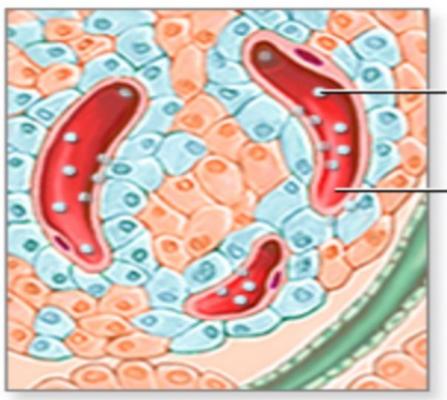
- At least 79 million people are diagnosed with pre-diabetes each year
- Above average blood glucose levels, not high enough to be classified under type 1 or type 2 diabetes
- Long-term damage to body, including heart and circulatory system
- Starts with unhealthy eating habits & inadequate exercise



## Secondary DM Secondary Diabetes Mellitus

- Secondary causes of Diabetes mellitus include
  - Acromegaly
  - Cushing syndrome
  - Thyrotoxicosis
  - Pheochromocytoma
  - Chronic pancreatitis
  - Cancer
  - Drug induced hyperglycemia

#### Drug induced hyperglycemia:


- Atypical Antipsychotics Alter receptor binding characteristics, leading to increased insulin resistance.
- Beta-blockers Inhibit insulin secretion.
- Calcium Channel Blockers Inhibits secretion of insulin by interfering with cytosolic calcium release.
- Corticosteroids Cause peripheral insulin resistance and gluconeogensis.
- Fluoroquinolones Inhibits insulin secretion by blocking ATP sensitive potassium channels.
- Naicin They cause increased insulin resistance due to increased free fatty acid mobilization.
- Phenothiazines Inhibit insulin secretion.
- Protease Inhibitors Inhibit the conversion of proinsulin to insulin.
- Thiazide Diuretics Inhibit insulin secretion due to hypokalemia.
   They also cause increased insulin resistance due to increased free fatty acid mobilization.

#### Diabetes Mellitus - Impact on Health

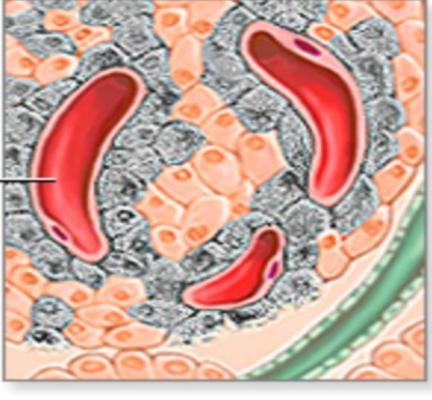
- Sixth leading cause of death due to cardiovascular effects resulting in atherosclerosis, coronary artery disease, and stroke
- Leading cause of end stage renal failure
- Major cause of blindness
- Most frequent cause of non-traumatic amputations
- Diabetes affects estimated 15.7 million people
  - (10.3 million are diagnosed; 5.4 million are undiagnosed)
- Increasing prevalence of Type 2 Diabetes in older adults and minority groups
  - (African American, American Indian and Hispanic populations)

## Diabetes Mellitus - Diabetes Type 1

- Definition Diabetes Mellitus Diabetes Type 1
  - Metabolic condition in which the beta cells of pancreas no longer produce insulin
- Characterized by hyperglycemia, breakdown of body fats and protein and development of ketosis
- Accounts for 5 10 % of cases of diabetes
- Most often occurs in childhood or adolescence
- Formerly called Juvenile-onset diabetes or insulindependent diabetes (IDDM)



Insulin-


cells

producing

Insulin secreted into bloodstream

Blood capillary





Insulinproducing cells destroyed



#### Pathophysiology - Type 1

- Autoimmune reaction in which the beta cells that produce insulin are destroyed
- Alpha cells produce excess glucagon causing hyperglycemia

#### **Risk Factors - Type 1**

- Genetic predisposition for increased susceptibility
  - HLA linkage
- Environmental triggers stimulate an autoimmune response
  - Viral infections (mumps, rubella, coxsackievirus B4)
  - Chemical toxins



# TYPE 1 DIABETES: FAST FACTS

Type 1 diabetes can be triggered by any virus, including a cold

Type 1
diabetes
affects about
1.6 million
people in the
U.S.

Most people with T1D are diagnosed in the ER as children

People who have type 1 diabetes require insulin





#### Type 1 Diabetes

#### **SYMPTOMS**



Frequent urination



Excessive thirst



Extreme hunger



Extreme fatigue



INSULIN

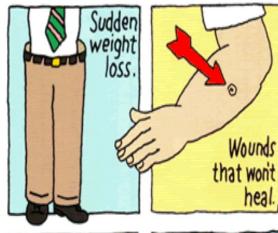
Blurred vision



Sudden weight loss



Irritability


#### **Diabetes Mellitus Manifestations**

- Process of beta cell destruction occurs slowly
- Hyperglycemia occurs when 80 90% is destroyed;
   often trigger stressor event (e. g. illness)
- Hyperglycemia leads to
  - Polyuria (hyperglycemia acts as osmotic diuretic)
  - Glycosuria (renal threshold for glucose: 180 mg/dL)
  - Polydipsia (thirst from dehydration from polyuria)
  - Polyphagia (hunger and eats more since cell cannot utilize glucose)
  - Weight loss (body breaking down fat and protein to restore energy source
  - Malaise and fatigue (from decrease in energy)
  - Blurred vision (swelling of lenses from osmotic effects)

#### **Diabetes Symptoms**

- High blood levels of glucose
- Blurry vision
- Fatigue
- Thirst
- Painful urination
- Frequent urination
- Sores that do not heal
- Nausea
- Vomiting
- Weight loss
- Hunger
- In some cases...there are no symptoms at all!!
- Diabetes type 1 and type 2 symptoms are closely similar, although, type 1 is often worse in severity




















## DIABETES MELLITUS - TYPE 1 SIGNS & SYMPTOMS:

REST RO

Polyuria
↑Urination

Polydipsia
Thirst

Polyphagia
Hunger

• Weight Loss

• Fatigue

↑Frequencyof Infections

• Rapid Onset

• Insulin H

• Familial Tendency

• Peak Incidence From 10 to 15 Years



@2007 Nursing Education Consultants, Inc.

#### **Diabetes Type 1 - Diagnosis**

- Patient is symptomatic plus
  - Casual plasma glucose (non-fasting) is 200 mg/dl OR
  - Fasting plasma glucose of 126 mg/dl or higher OR
  - Two hour plasma glucose level of 200 mg/dl or greater during an oral glucose tolerance test

# Testing for Diabetes FPG (Fasting Plasma Glucose Test)

- Patient must fast for eight hours
- Doctor will mix blood with other liquids to determine the amount of sugar or glucose in the blood
- This is measured in mg/dl
- Blood glucose range for pre-diabetics will be in the 100-125 mg/dl range.
- Type 2 diabetes will have blood sugar results in the range of 126 mg/dl and above
- These levels can increase the risk of heart disease and stroke

# Testing for Diabetes 1 OGTT (Oral Glucose Tolerance Test)

- Doctor measures how well your body reacts to average dose of sugar
- Patient will be drawn blood two hours before and after he/she drinks pre-mixed beverage with the sugar
- Blood glucose levels are measured to see how the body reacted
- Blood glucose range for pre- diabetics will be between 140-199 mg/dl.
- For those with type 2 diabetes, the range will start at 200 mg/dl and continue to peak.

## **Diagnostic Tests - Type 1**

- Blood glucose greater than 250 mg/dL
- Blood pH less than 7.3
- Blood bicarbonate less than 15 mEq/L
- Ketones present in blood
- Ketones and glucose present in urine
- Electrolyte abnormalities (Na, K, Cl)
- Serum osmolality < 350 mosm/kg (normal 280-300)</li>

#### Values of Diagnosis of Diabetes Mellitus

#### Values for diagnosis of diabetes mellitus and other categories of hyperglycaemia

| ues for diagnosis of diabetes mellitus and other categories of hypergrycaemia |                                                                    |                   |                   |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------|-------------------|
|                                                                               | Glucose concentration, mmol I <sup>-1</sup> (mg dI <sup>-1</sup> ) |                   |                   |
|                                                                               | Whole blood                                                        |                   | Plasma*           |
|                                                                               | Venous                                                             | Capillary         | Venous            |
| Diabetes Mellitus:                                                            |                                                                    |                   |                   |
| Fasting                                                                       | ≥ 6.1 (≥ 110)                                                      | ≥ 6.1 (≥ 110)     | ≥ 7.0 (≥ 126)     |
| or                                                                            |                                                                    |                   |                   |
| 2-h post glucose load                                                         | ≥ 10.0 (≥ 180)                                                     | ≥ 11.1 (≥ 200)    | ≥ 11.1 (≥ 200)    |
| or both                                                                       |                                                                    |                   |                   |
| Impaired Glucose Tolerance (IGT):                                             |                                                                    |                   |                   |
| Fasting (if measured)                                                         | < 6.1 (< 110)                                                      | < 6.1 (< 110)     | < 7.0 (< 126)     |
| and                                                                           |                                                                    |                   |                   |
| 2-h post glucose load                                                         | ≥ 6.7 (≥ 120) and                                                  | ≥ 7.8 (≥ 140) and | ≥ 7.8 (≥ 140) and |
|                                                                               | < 10.0 (< 180)                                                     | < 11.1 (< 200)    | < 11.1 (< 200)    |
| Impaired Fasting Glycaemia (IFG):                                             |                                                                    |                   |                   |
| Fasting                                                                       | ≥ 5.6 (≥ 100) and                                                  | ≥ 5.6 (≥ 100) and | ≥ 6.1 (≥ 110) and |
|                                                                               | < 6.1 (< 110)                                                      | < 6.1 (< 110)     | < 7.0 (< 126)     |
| and (if measured)                                                             |                                                                    |                   |                   |
| 2-h post glucose load                                                         | < 6.7 (< 120)                                                      | < 7.8 (< 140)     | < 7.8 (< 140)     |

#### **Test or Exam**

**Glycated HB** 

**Fundoscopy** 

**Foot exam** 

Lipid profile

S-creatinine

Microalbuminuria

**Blood pressure** 

**BMI** 

**ECG** 

#### Frequency

**Every 6 months** 

1 x per year

**Every 4 months** 

1-2 x per year

1 x per year

1 x per year

**Daily** 

**Every 4 months** 

**Every 6 months** 

### **Treatment of Type 1 Diabetes**

- Requires immediate medical attention and usually admission to hospital
- Frequent measurement of blood glucose and treat according to glucose levels with regular insulin (mild ketosis, subcutaneous route; severe ketosis with intravenous insulin administration)
- Restore fluid balance: initially 0.9% saline at 500 1000 mL/hr.; regulate fluids according to client status; when blood glucose is 250 mg/dL add dextrose to intravenous solutions

### **Type 2 Diabetes**

- Definition: condition of fasting hyperglycemia occurring despite availability of body's own insulin
- Often called non-insulin dependent diabetes or adult onset diabetes
- Both are misnomers, because it can be found in children and type II DM may require insulin

## **Type 2 Diabetes**

#### **Pathophysiology**

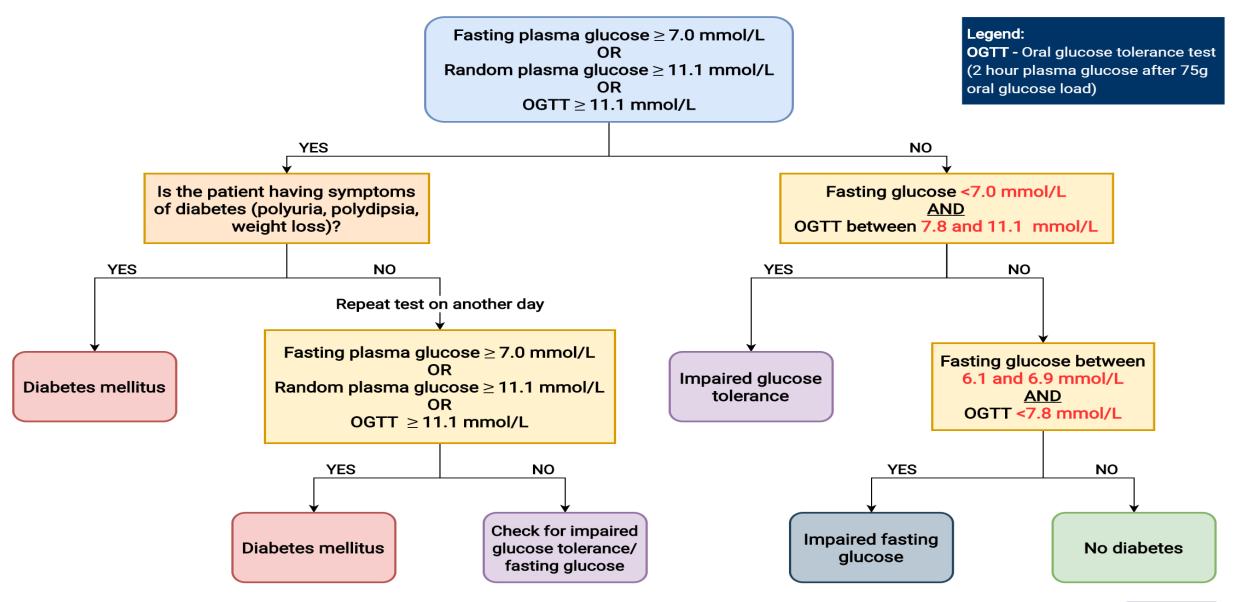
- Sufficient insulin production to prevent Diabetic Keto Acidosis
- But insufficient to lower blood glucose through uptake of glucose by muscle and fat cells
- Cellular resistance to insulin increased by obesity, inactivity, illness, age, some medications



Reduced/altered insulin secretion

Hyperglycemia

Inappropriate endogenous glucose production


Impaired insulin-mediated glucose disposal







#### Diagnostic Criteria for Diabetes mellitus



## Diagnostic Tests to Monitor Diabetes Type 1 Management

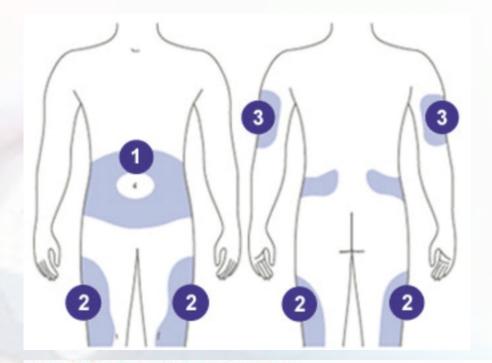
- Fasting Blood Glucose (normal: 70 110 mg/dL)
- Glycosylated Hemoglobin (c) (Hemoglobin A1C)
  - Considered elevated if values above 7%
  - Blood test analyzes excess glucose attached to hemoglobin.
  - Since rbc lives about 120 days gives an average of the blood glucose over previous 2 to 3 months
  - Not a fasting test, can be drawn any time of the day
  - % of glycated (glucose attached) hemoglobin measures how much glucose has been in the bloodstream for the past 3 months

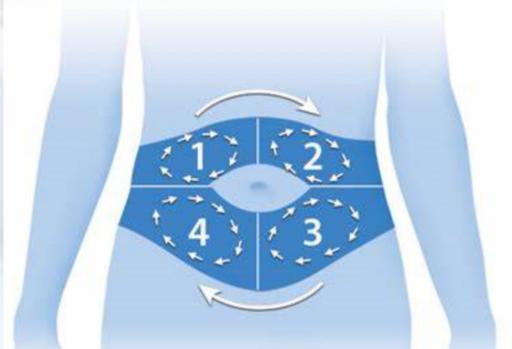
## Diagnostic Tests to Monitor Diabetes Type 1 Management

- Urine glucose and ketone levels (part of routine urinalysis)
  - Glucose in urine indicates hyperglycemia (renal threshold is usually 180 mg/dL)
  - Presence of ketones indicates fat breakdown, indicator of DKA; ketones may be present if person not eating
- Urine albumin (part of routine urinalysis)
  - If albumin present, indicates need for workup for nephropathy
  - Typical order is creatinine clearance testing

### Diagnostic Tests to Monitor Diabetes Type 1 Management

- Cholesterol and Triglyceride Levels
  - Recommendations
    - LDL < 100 mg/dl
    - HDL > 45 mg/dL
    - Triglycerides < 150 mg/dL</li>
  - Monitor risk for atherosclerosis and cardiovascular complications
  - Serum electrolytes in clients with DKA or HHNS
    - Diabetic Keto Acidosis
    - Hyperglycemic hyperosmolar nonketotic syndrome


### Hyperglycemic Hyperosmolar Nonketotic Syndrome


- Hyperglycemic hyperosmolar nonketotic syndrome (HHNS) is also known as hyperglycemic hyperosmolar syndrome (HHS).
- It involves very high blood sugar levels and can be life threatening.
- HHNS can happen to anyone, but it's more common in older people who have type 2 diabetes.
- HHNS is an emergency caused by very high blood sugar, often over 600 mg/dL.
- Kidneys try to get rid of the extra blood sugar by putting more sugar into the urine.
- This makes you urinate more, and you lose too much body fluid, causing dehydration.

#### **Diabetic Medications - Insulin**

- Sources: standard practice is use of human insulin prepared by alteration of pork insulin or recombinant DNA therapy
- Clients who need insulin as therapy:
  - All type 1 diabetics since their bodies essentially no longer produce insulin
  - Some Type 2 diabetics, if oral medications are not adequate for control (both oral medications and insulin may be needed)
  - Diabetics enduring stressor situations such as surgery, corticosteroid therapy, infections, treatment for DKA, HHNS
- Women with gestational diabetes who are not adequately controlled with diet
- Some clients receiving high caloric feedings including tube feedings or parenteral nutrition

- Injection sites
  - Abdominal areas is the most preferred because of rapid absorption
  - Injection sites are rotated





|                                                                  |             | BEFORE<br>BREAKFAST | BEFORE<br>LUNCH | BEFORE<br>DINNER | AT<br>BEDTIME |
|------------------------------------------------------------------|-------------|---------------------|-----------------|------------------|---------------|
| NPH dose                                                         |             | 12 units            |                 | 6 units          |               |
| Regular insulin dose if fingerstick glucose is (mg/dl) [mmol/L]: |             |                     |                 |                  |               |
| 70-100                                                           | [3.9-5.5]   | 4 units             |                 | 4 units          |               |
| 101-150                                                          | [5.6-8.3]   | 5 units             |                 | 5 units          |               |
| 151-200                                                          | [8.4-11.1]  | 6 units             |                 | 6 units          |               |
| 201-250                                                          | [11.2-13.9] | 7 units             |                 | 7 units          |               |
| 251-300                                                          | [14.0-16.7] | 8 units             | 1 unit          | 8 units          | 1 unit        |
| >300                                                             | [>16.7]     | 9 units             | 2 units         | 9 units          | 2 units       |

### Type 2 Medications Oral Hypoglycemic Agents

- Used to treat Diabetes Type 2
- Client must also maintain prescribed diet and exercise program; monitor blood glucose levels
- Not used with pregnant or lactating women
- Several different oral hypoglycemic agents and insulin may be prescribed for the client
- Specific drug interactions may affect the blood glucose levels
- Must have some functioning beta cells

## Classifications & Action of Medications Sulfonylureas

- Action: Stimulates pancreatic cells to secrete more insulin and increases sensitivity of peripheral tissues to insulin
- Used to treat non-obese Type 2 diabetics
- Examples: Glipizide(Glucotrol), Chlorpropamide (Diabinese), Tolazamide (Tolinase)

## Classifications & Action of Medications Meglitinides

- Action: stimulates pancreatic cells to secret more insulin
- Taken just before meals, rapid onset, limited duration of action
- Major adverse effects is hypoglycemia
- Used in non-obese diabetics
- Examples: Repaglinide (Prandin), Nateglinide (Starlix)

# Classifications & Action of Medications Biguanides

- Action: decreases overproduction of glucose by liver and makes insulin more effective in peripheral tissues
- Used in obese diabetics
- Does not stimulate insulin release
- Metabolized by the kidney, do not use with renal patients
- Example: Metformin (Glucophage)

# Classifications & Action of Medications Alpha-Glucoside Inhibitors

- Action: Slow carbohydrate digestion and delay rate of glucose absorption
- Take with first bite of the meal or 15 min. after
- Adjunct to diet to decrease blood glucose levels
- Example: Acarbose (Precose), Miglitol (Glyset)

#### Classifications & Action of Medications

#### **Thizaolidinediones (Glitazones)**

- Action: Sensitizes peripheral tissues to insulin
- Used in obese diabetics
- Inhibits glucose production
- Improves sensitivity to insulin in muscle and fat tissue
- Examples: Rosiglitazone (Avandia), Pioglitazone (Actos)

#### Classifications & Action of Medications

- Patients with Type 2 DM who are obese have insulin resistance, they produce enough insulin
  - Should use Glucophage, Actos or Avandia
  - Enhances insulin secretion in tissue, but does not increase amount of insulin secreted
- Patients with Type 2 DM who are thin do not produce enough insulin, they are not insulin resistant
  - Need sulfonylurea agents like Diabinese, Tolinase, Glucotrol, Diabeta

#### Role of Diet in Diabetic Management

#### Goals for diabetic therapy include

- Maintain as near-normal blood glucose levels as possible with balance of food with medications
- Obtain optimal serum lipid levels
- Provide adequate calories to attain or maintain reasonable weight

#### Role of Diet in Diabetic Management

#### Goals for diabetic therapy include

- Diet Composition
  - Carbohydrates: 60 70% of daily diet
    - Carbohydrates convert quickly to sugars
  - Advice patient to consume a similar amount of carbs at each meal
  - Medications can work on a consistent glucose response from foods
- Protein: 15 20% of daily diet
- Fats: No more than 10% of total calories from saturated fats

#### Role of Diet in Diabetic Management

- Fiber: 20 to 35 grams/day; promotes intestinal motility and gives feeling of fullness
- Sodium: recommended intake 1000 mg per 1000 kcal
- Sweeteners approved by FDA instead of refined sugars
- Limited use of alcohol: potential hypoglycemic effect of insulin and oral hypoglycemics

### **Nursing and Health Care Plans**

- Assessment, planning, implementation with client according to type and stage of diabetes
- Prevention, assessment and treatment of complications through client self-management and keeping appointments for medical care
- Client and family teaching for diabetes management
- Health promotion includes education of healthy life style, and lowering risks for developing diabetes for all clients.
- Blood glucose screening at 3-year intervals starting at age 45 for persons in high risk groups

#### **Specific Teaching Interventions**

- Risk for impaired skin integrity: Proper foot care
  - Daily inspection of feet
  - Checking temperature of any water before washing feet
  - Need for lubricating cream after drying but not between toes
  - Patients should be followed by a podiatrist
  - Early reporting of any wounds or blisters

#### **Specific Teaching Interventions**

- Risk for infection
  - Frequent hand washing
  - Early recognition of signs of infection and seeking treatment
  - Meticulous skin care
- Regular dental examinations and consistent oral hygiene care



- Risk for injury: Prevention of accidents, falls and burns
- Sexual dysfunction
  - Effects of high blood sugar on sexual functioning
  - Resources for treatment of impotence, sexual dysfunction
- Ineffective coping
- Assisting clients with problem-solving strategies for specific concerns

- Providing information about diabetic resources, community education programs, and support groups
- Utilizing any client contact as opportunity to review coping status and reinforce proper diabetes management and complication prevention

### How to prevent & control diabetes

- Prevention all starts with a better lifestyle
- Eating healthier
- Being active
- Taking medicine as directed
- Taking care of your body
- Check feet to make sure there is no nerve damage or interruption of blood
- flow

### How to prevent & control diabetes

- Take care of teeth
- Control blood pressure and high
- No smoking!
- Check in with your doctor at least once a month
- Have your blood sugar checked along with weight, blood pressure, and feelings
- Check blood sugar levels daily by using home monitoring device