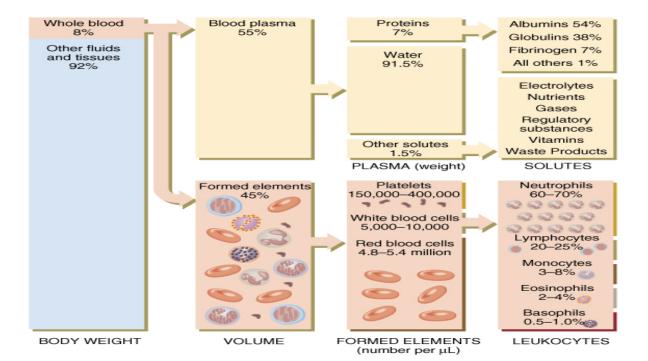

Blood Physiology Dr. Gary Mumaugh – Campbellsville University

Blood Generalizations

- Connective tissue in fluid form
- Fluid of life carries oxygen from lungs to all parts of body and carbon-di-oxide from all parts of the body to the lungs
- Fluid of growth carries nutritive substances from the digestive system and hormones from endocrine gland to all the tissues.
- Fluid of health protects the body against diseases and get rid of unwanted substances by transporting them into excretory organs like kidney.


Composition of Blood

- Blood is the body's only fluid tissue
- It is composed of liquid plasma and formed elements
- Formed elements include:
 - Erythrocytes, or red blood cells (RBCs)
 - Leukocytes, or white blood cells (WBCs)
 - Platelets
- Hematocrit the percentage of RBCs out of the total blood volume
 - Normal 47% male, 42% female

Physical Characteristics and Volume

- Blood is a sticky, opaque fluid with a metallic taste
- Color varies from scarlet (oxygen-rich) to dark red (oxygen-poor)
- The pH of blood is 7.35–7.45
- Temperature is 38°C, slightly higher than "normal" body temperature
- Blood accounts for approximately 8% of body weight
- Average volume of blood is 5–6 L for males, and 4–5 L for females

Functions of Blood

- **Distribution** Blood transports
 - o Oxygen from the lungs and nutrients from the digestive tract
 - o Metabolic wastes from cells to the lungs and kidneys for elimination
 - Hormones from endocrine glands to target organs
 - o O₂ from lungs to tissues
 - CO₂ from tissues to lungs
 - "Food" from gut to blood
- Regulation Blood maintains
 - o Appropriate body temperature by absorbing and distributing heat
 - o Normal pH in body tissues using buffer systems
 - o Adequate fluid volume in the circulatory system
 - o Coolant properties of water
 - Vasodilatation of surface vessels dump heat
 - o Water content of cells by interactions with dissolved ions and proteins
 - Water- high heat capacity, thermal conductivity, heat of vaporization
 - Typical heat generation is 3000 kcal/day
- **Protection -** Blood prevents blood loss by
 - Activating plasma proteins and platelets
 - o Initiating clot formation when a vessel is broken
- Protection Blood prevents infection by:
 - o Synthesizing and utilizing antibodies
 - Activating complement proteins
 - Activating WBCs to defend the body against foreign invaders

Blood Plasma

- Straw-colored, sticky fluid portion of blood
- 55% of whole blood. Approximately 90% water.
- Contains over 100 solutes, including:
 - Plasma Proteins (about 7% of plasma)
 - Plasma proteins are made in the liver and confined to the bloodstream
 - \circ $\;$ There are three main plasma proteins:
 - **Albumin** Prevents water from diffusing out of blood vessels. This maintains blood osmotic pressure.
 - Globulins Includes antibodies and blood proteins that transport lipids, iron, and copper. Also called immunoglobulins, which are antibodies that bind to foreign substances.
 - Fibrinogen One of the molecules in chemical reactions for blood clotting
 - Other plasma substances (about 2% to 3%)
 - Nonprotein nitrogenous substances lactic acid, urea, creatinine
 - Organic nutrients glucose, carbohydrates, amino acids
 - Electrolytes sodium, potassium, calcium, chloride, bicarbonate
 - Respiratory gases oxygen and carbon dioxide

Functions of Blood Plasma

- Coagulation of blood Fibrinogen to fibrin
- Defense mechanism of blood Immunoglobulins
- Transport mechanism α Albumin, β globulin transport hormones, gases, enzymes, etc.
- Maintenance of osmotic pressure in blood
- Acid-base balance
- Provides viscosity to blood
- Provides suspension stability of RBC
- Reserve proteins

Erythrocytes (RBCs)

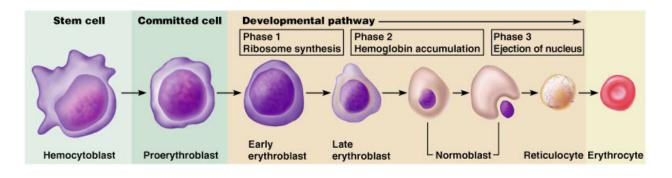
- Oxygen-transporting cells—7.5 μm in diameter (diameter of capillary 8–10mm)
- Are the ideal measuring tool for estimating sizes of nearby structures
- Biconcave discs, anucleate, essentially no organelles
- Filled with hemoglobin (Hb), a protein that functions in gas transport
- Contain the plasma membrane protein that:
 - Give erythrocytes their flexibility
 - Allow them to change shape as necessary
- Structural characteristics contribute to its gas transport function
 - Biconcave shape that has a huge surface area relative to volume
 - o Discounting water content, erythrocytes are more than 97% hemoglobin

Typical Counts

- 4,600,000 6,200,000 males
- 4,200,000 5,400,000 females
- 4,500,000 5,100,000 children

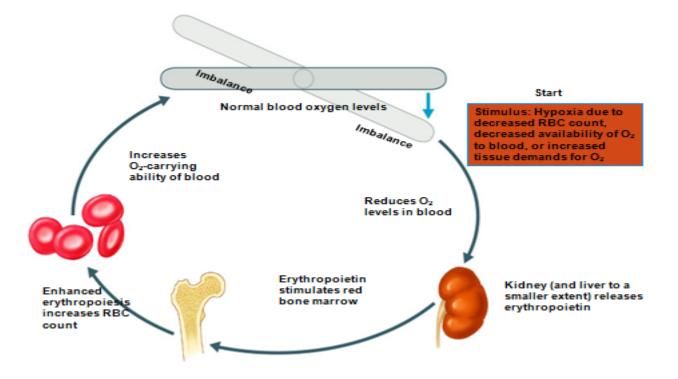
General Erythrocyte Function

- Erythrocytes are dedicated to respiratory gas transport
- Each RBC contains approximately 300 million hemoglobin molecules
- In the systemic capillaries, hemoglobin gives up much of it's oxygen
- In the pulmonary capillaries, RBCs pick up oxygen
- Transport oxygen from lungs to the tissues (oxyhemoglobin).
- Transport carbon-di-oxide from tissues to lungs (carboxyhemoglobin)
- Hemoglobin acts as a buffer and regulates the hydrogen ion concentration (acid base balance)
- Carry the blood group antigens and Rh factor


Specific Erythrocyte Functions

- Gas Transport
 - Continuous interchange of CO₂ and O₂ between lungs and tissues.
 - o Oxygen
 - indispensable for ATP production.
 - CO₂
 - major by product of energy metabolism
- pH Maintenance
 - Oxygen release maintains pH in tissues
 - Lungs:

- Tissues:
 - CO₂ forms proton and bicarbonate
 - Proton is bound to Hb, when O₂ is released
 - Bicarbonate leaves RBC
 - Cl⁻ / HCO³⁻ interchange
- Hb
 - Higher ability of Hb to release O₂ but lower ability to bind O₂ Right shift
 - Useful at site of O₂ release (tissues)
- CO2 Transport
 - o Bicarbonate formation within RBC and CI interchange
 - CO₂ dissolved in blood plasma
 - Carbaminohemoglobin formation


Production of Erythrocytes

- Hematopoiesis blood cell formation
- 100 billion new blood cells formed each day
- Hematopoiesis occurs in the red bone marrow of the:
 - Axial skeleton and girdles and Epiphyses of the humerus and femur

Regulation of Erythropoiesis

- Circulating erythrocytes the number remains constant and reflects a balance between RBC production and destruction
 - o Too few red blood cells leads to tissue hypoxia
 - o Too many red blood cells causes undesirable blood viscosity
- Erythropoiesis is hormonally controlled and depends on adequate supplies of iron, amino acids, and B vitamins
- Erythropoietin (EPO) release by the kidneys is triggered by:
 - Hypoxia due to decreased RBCs
 - Decreased oxygen availability
 - o Increased tissue demand for oxygen

Dietary Requirements of Erythropoiesis

- Erythropoiesis requires:
 - Proteins, lipids, and carbohydrates
 - $\circ~$ Iron, vitamin B12, and folic acid
- The body stores iron in Hb (65%), the liver, spleen, and bone marrow

Lifespan of Erythrocytes

- The life span of an erythrocyte is 100–120 days
- Old erythrocytes become rigid and fragile, and their hemoglobin begins to degenerate
- Dying erythrocytes are engulfed by macrophages
- Heme and globin are separated and the iron is salvaged for reuse

Cell Lines in Blood Cell Formation

- All blood cells originate in bone marrow
- All originate from one cell type Hemopoietic blood stem cell
- Lymphoid stem cells Give rise to lymphocytes
- Myeloid stem cells Give rise to all other blood cells

The Blood Throughout Life

- First blood cells develop with the earliest blood vessels
- Mesenchyme cells cluster into blood islands
- Late in month 2 Liver and spleen take over blood formation
- Bone marrow becomes major hematopoietic organ at month 7

Leukocytes (WBCs)

- Leukocytes, the only blood components that are complete cells:
 - o Are less numerous than RBCs
 - Make up 1% of the total blood volume
 - Can leave capillaries via diapedesis
 - Move through tissue spaces
- 4800–11,000/cubic millimeter
- Protect the body from infectious microorganisms
- Function outside the bloodstream in loose connective tissue
- Diapedesis—circulating leukocytes leave the capillaries
- Originate in bone marrow
- Leukocytosis WBC count over 11,000 per cubic millimeter
 - o Normal response to bacterial or viral invasion

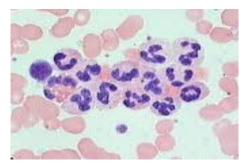
Number of Leuckocytes "Never Let Monkeys Eat Bananas"

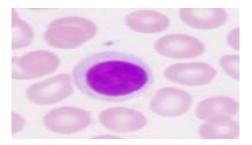
- From the most to the least prevelent
 - o Neutrophils, Lymphocytes, Monocytes, Eosinophils, Basophils

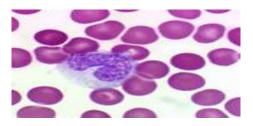
Neutrophils

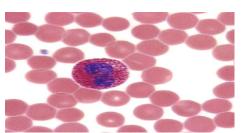
- Neutrophils are the most numerous WBC
- 50-70% of WBC population
- Attracted to sites of inflammation
- Neutrophils are our body's bacteria slayers
- Are phagocytic
- First line of defense against invading microorganisms.
- Powerful and effective killer machine contains enzymes like protease, elastase, metalloproteinase, NADPH oxidase; antibody like substances called defensins.
- Defensins antimicrobial peptides active against bacteria and fungi.
- Secrete Platelet Aggregation Factor (PAF) accelerates the aggregation of platelet during injury to the blood vessels

Lymphocytes


- Account for 25% or more of WBCs
- Only a small number is found in the blood
- Most are found in lymph tissue
- Critical role in Immunity
- Secrete antibodies
- Two main classes of lymphocyte
 - **T cells**—attack foreign cells directly
 - **B cells**—multiply to become plasma cells


Monocytes


- Monocytes account for 4–8% of leukocytes
- They are the largest leukocytes
- They leave the circulation, enter tissue, and differentiate into macrophages
- They have massive appetites
- Defends against chronic infections, viruses and parasites


Eosinophils

- Eosinophils account for 1–4% of WBCs
- Lead the body's counterattack against parasitic worms
- Lessen the severity of allergies by phagocytizing immune complexes
- Secrete lethal substances at the time of exposure to foreign proteins/parasites
- Eosinophil peroxidase destroy worms, bacteria and tumor cells.
 - Major basic protein damage parasites
 - Eosinophil cationic protein (ECP)- destroys helminthes.

Basophils

- Account for 0.5% of WBCs
- Rarest of all WBC
- Releases histamine in inflammations
- Histamine inflammatory chemical that acts as a vasodilator and attracts other WBCs (antihistamines counter this effect)

Basophill granules release some important substances like -

- 1. Histamine Acute hypersensitivity reaction- vascular changes, increase capillary permeability
- 2. Heparin prevents intravascular blood clotting
- 3. Hyaluronic acid necessary for deposition of ground substances in basement membrane
- 4. Proteases exaggerate inflammation
- Basophill have IgE receptor hypersensitivity reaction

Production of Leukocytes

- Overproduction of WBC occurs in leukemia and infectious mononucleosis
- On the opposite end of the spectrum is Leukopenia, which is an abnormally low WBC count.
 - \circ $\,$ Common with cancer medications and glucocorticoids
- Many hematopoietic hormones are used clinically to stimulate bone marrow

Leukocytes Disorders: Leukemias

- "White blood"
- Leukemia refers to cancerous conditions involving white blood cells
- In all leukemias, the bone marrow becomes almost totally occupied by cancerous WBC and immature WBC before flowing into the boodstream.
- Because other cells can be crowded out, severe anemia and bleeding problems occur.
- Chronic leukemia is more prevalent in older people.

Platelets

- Platelets are also known as thrombocytes
- They lack a nucleus and are roughly half the size of a RBC
- There are approximately 130,000 360,000 per cubic millimeter of blood
- They help repair damaged blood vessels by sticking to broken surfaces
 - 1. Blood clotting
 - 2. Clot retraction
 - 3. Defence mechanism
 - 4. Homeostasis
 - 5. Repair and rupture of blood vessel

The Big Picture: Blood and the Whole Body

- Blood plasma transports substances, including heat, around the body, linking all body tissues together
 - Substances can be transported between almost any two points in the body
- Blood tissue contains formed elements—blood cells and platelets
 - RBCs assist in the transport of oxygen and carbon dioxide
 - WBCs assist in the defense mechanisms of the whole body
 - Platelets prevent loss of the fluid that constitutes the internal environment
- No organ or system of the body can maintain proper levels of nutrients, gases, or water without direct or indirect help from blood
 - Other systems assist the blood
- Blood is useless unless it continues to transport, defend, and maintain balance

Cell Type	Illustration	Description*	Cells/mm ³ (µl) of Blood	Duration of Development (D) and Life Span (LS)	Function
Erythrocytes (red blood cells, RBCs)	Ø	Biconcave, anucleate disc; salmon-colored; diameter 7–8 μm	4–6 million	D: 5–7 days LS: 100–120 days	Transport oxygen and carbon dioxide
Leukocytes (white blood cells, WBCs)		Spherical, nucleated cells	4800–10,800		
Granulocytes					
 Neutrophil 		Nucleus multilobed; inconspicuous cytoplasmic granules; diameter 10–12 µm	3000-7000	D: 6–9 days LS: 6 hours to a few days	Phagocytize bacteria
 Eosinophil 	0	Nucleus bilobed; red cytoplasmic granules; diameter 10–14 μm	100-400	D: 6–9 days LS: 8–12 days	Kill parasitic worms; destroy antigen- antibody complexes; inactivate some inflammatory chemicals of allergy
Cell Type	Illustration	Description*	Cells/mm ³ (µl) of Blood	Duration of Development (D) and Life Span (LS)	Function
 Basophil 		Nucleus lobed; large blue-purple cytoplasmic granules; diameter 8–10 µm	20–50	D: 3–7 days LS: ? (a few hours to a few days)	Release histamine and other mediators of inflammation; contain heparin, an anticoagulant
Agranulocytes					
 Lymphocyte 	۲	Nucleus spherical or indented; pale blue cytoplasm; diameter 5–17 μm	1500-3000	D: days to weeks LS: hours to years	Mount immune response by direct cell attack or via antibodies
 Monocyte 		Nucleus U or kidney shaped; gray-blue cytoplasm; diameter 14–24 µm	100-700	D: 2–3 days LS: months	Phagocytosis; develop into macrophages in tissues

Discoid cytoplasmic fragments containing granules; stain deep purple; diameter 2–4 µm

Platelets

al

Summary of Formed Elements of the Blood

Seal small tears in blood vessels; instrumental in blood clotting

D: 4–5 days LS: 5–10 days

150,000-400,000