Blood Vessels Dr. Gary Mumaugh – Campbellsville University

Blood Vessels

- Blood is carried in a closed system of vessels that begins and ends at the heart
- The three major types of vessels are arteries, capillaries, and veins
- Arteries carry blood away from the heart, veins carry blood toward the heart
- Capillaries contact tissue cells and directly serve cellular needs

Generalized Structure of Blood Vessels

- Layers
 - Tunica externa: found in arteries and veins (tunica adventitia)
 - o Tunica media: found in arteries and veins
 - Tunica intima: found in all blood vessels
 - Lining endothelial cells
 - Only lining found in capillary
 - Line entire vascular tree
 - Provide a smooth luminal surface; protect against intravascular coagulation
- Lumen central blood-containing space surrounded by tunics

Blood vessels

- Collagen fibers
 - Exhibit woven appearance
 - Have only a limited ability to stretch (2% to 3%) under physiological conditions
 - o Strengthen and keep lumen of vessel open
- Elastic fibers
 - Form highly elastic networks
 - Fibers can stretch more than 100% under physiological conditions
 - Play important role in creating passive tension to help regulate blood pressure throughout the cardiac cycle
 - Diameters range from 2.5 cm to 1 cm
 - o Includes the aorta and its major branches
 - High elastin content dampens surge of blood pressure
- Smooth muscle fibers
 - Most numerous in elastic and muscular arteries
 - o Exert active tension in vessels when contracting
 - Lie distal to elastic arteries
 - Diameters range from 1 cm to 0.3 mm
 - o Includes most named arteries
 - Tunica media is thick
 - Unique features
 - Internal and external elastic laminae

Capillaries are the smallest blood vessels

- Capillaries
 - Primary exchange vessels
 - Microscopic vessels
 - Carry blood from arterioles to venules; together, arterioles, capillaries, and venules constitute the microcirculation
 - Not evenly distributed; highest numbers in tissues with high metabolic rate; may be absent in some "avascular" tissues, such as cartilage
 - Walls consisting of a thin tunica interna, one cell thick
 - o Allow only a single RBC to pass at a time
- Smallest blood vessels
 - \circ Diameter from 8 to 10 μm
 - Red blood cells pass through single file
 - Site-specific functions of capillaries
 - Lungs—oxygen enters blood, carbon dioxide leaves
 - Small intestines—receive digested nutrients
 - Endocrine glands—pick up hormones
 - Kidneys—remove of nitrogenous wastes

Continuous Capillaries

- Most common type of capillary
- Occur in most organs, found in skin and muscle
- Tight junctions and desmosomes join epithelial cells
- Allow small molecules in and out of capillaries

Fenestrated Capillaries

- Large pores in their endothelium increases
 permeability
- Occur where high rates of exchange occur
 - o Intestines
 - o Glomeruli of kidneys
 - o Endocrine glands

Sinusoids

- Most permeable
- Occur in bone marrow and spleen

Low-Permeability Capillaries

- Blood brain barrier
 - o Capillaries have complete tight junctions
 - No intercellular clefts are present
 - Vital molecules pass through
 - Highly selective transport mechanisms
 - Not a barrier against:
 - Oxygen, carbon dioxide, and some anesthetic

Capillary Beds

- A microcirculation of interwoven networks of capillaries.
- Precapillary sphincters control blood flow through the capillary beds
 - Cuff of smooth muscle that surrounds each true capillary
 - Regulates blood flow into the capillary
- Blood flow is regulated by vasomotor nerves and local chemical conditions, so it can either bypass or flood the capillary beds
- Network of capillaries running through tissues
- Tendons and ligaments—poorly vascularized
- Epithelia and cartilage—avascular
 - o Receive nutrients from nearby connective tissue

Venous Vessels

- Conduct blood from capillaries toward the heart
- Blood pressure is much lower than in arteries
- Venules are the smallest veins
 - \circ Diameters from 8 to 100 μm
 - Smallest venules—called postcapillary venules
- Venules join to form veins
- Veins are capacitance vessels (blood reservoirs) that contain 65% of the blood supply
- Veins have much lower blood pressure and thinner walls than arteries
- To return blood to the heart, veins have special adaptations
 - o Large-diameter lumens, which offer little resistance to flow
 - Valves which prevent backflow of blood

Veins

- Structural differences from arteries
 - Lumens are larger
 - 65% of blood in veins at any given time
 - Tunica externa is thicker
 - Less elastin in walls
 - Walls are thinner than those of comparable arteries

Mechanisms to Counteract Low Venous Pressure

- Valves in some veins
 - Particularly in limbs
 - Prevent backflow of blood
 - o Not located in veins of thoracic and abdominal cavities
- Skeletal muscle pump
 - Muscles press against thin-walled veins

Venous Return to the Heart

- Venous return: amount of blood returned to the heart by the veins
- Gravity: the pull of gravity on venous blood while sitting or standing tends to cause a decrease in venous return (orthostatic effect)
- Venous pumps: blood-pumping action of respirations and skeletal muscle contractions facilitate venous return by increasing pressure gradient between peripheral veins and venae cavae
- Three main mechanisms of venous return to the heart:
 - Respiratory pump mechanism- pressure changes occur in the thoracic and abdominal cavities during inspiration and expiration. This compresses veins and assists blood return to the heart.
 - Skeletal muscle contractions: promote venous return by squeezing veins through a contracting muscle and milking the blood toward the heart
 - One-way valves in veins prevent backflow

Vascular Anastomoses

- Vessels interconnect to form vascular anastomoses
 - o Organs receive blood from more than one arterial source
- Neighboring arteries form arterial anastomoses
 - Provide collateral channels
- Veins anastomose more frequently than arteries

Circulatory Pathways

- The vascular system has two distinct circulations
 - Pulmonary Circulation
 - Short loop that runs from the heart to the lungs and back to the heart
 - Pulmonary trunk
 - Leaves the right ventricle
 - Divides into right and left pulmonary arteries
 - Superior and inferior pulmonary veins
 - Carry oxygenated blood into the left atrium
 - Vessels of pulmonary circuit
 - Thinner walls than systemic vessels
 - Maximum arterial pressure lower in pulmonary circuit

Circulatory Pathways

• Systemic Circulation

- Routes blood through a long loop to all parts of the body and returns to the heart Systemic arteries
- Carry oxygenated blood away from the heart
- Aorta—largest artery in the body

Localized Blood Flow

- Blood flow to skeletal muscle
 - When muscles become active, hyperemia is directly proportional to greater metabolic activity of the muscle (active or exercise hyperemia)
 - Muscle blood flow can increase tenfold or more during physical activity as vasodilation occurs
- Blood flow to skin
 - Helps maintain body temperature
 - Provides a blood reservoir
- Blood flow to the brain
 - \circ $\;$ Is constant, as neurons are intolerant of ischemia
 - o Brain is extremely sensitive to declines in pH
 - The brain can regulate its own blood flow in certain circumstances, such as ischemia caused by a tumor
 - The brain is vulnerable under extreme systemic pressure changes
 - MAP below 60mm Hg can cause syncope (fainting)
 - MAP above 160 can result in cerebral edema
- Blood flow to the lungs
 - Blood flow in the pulmonary circulation is unusual in that:
 - The pathway is short
 - Arteries/arterioles are more like veins/venules (thin-walled, with large lumens)

Measuring Blood Pressure

- Arterial blood pressure
 - Measured with a sphygmomanometer and stethoscope; listen for Korotkoff sounds as the pressure in the cuff is gradually decreased
 - Systolic blood pressure: force of the blood pushing against the artery walls while ventricles are contracting
 - Diastolic blood pressure: force of the blood pushing against the artery walls when ventricles are relaxed
 - \circ $\,$ Pulse pressure: difference between systolic and diastolic blood pressure
- The first sound heard is recorded as the systolic pressure
- The pressure when sound disappears is recorded as the diastolic pressure

Variations in Blood Pressure

- Blood pressure cycles over a 24-hour period
- BP peaks in the morning due to waxing and waning levels of retinoic acid
- Extrinsic factors such as age, sex, weight, race, mood, posture, socioeconomic status, and physical activity may also cause BP to vary
- Alterations in Blood Pressure
 - Hypotension low BP in which systolic pressure is below 100 mm Hg
 - Hypertension condition of sustained elevated arterial pressure of 140/90 or higher

Hypertension

- Hypertension maybe transient or persistent
- Primary or essential hypertension risk factors in primary hypertension include diet, obesity, age, race, heredity, stress, and smoking
- Secondary hypertension due to identifiable disorders, including excessive renin secretion, arteriosclerosis, and endocrine disorders

Developmental Aspects

- Blood vessels are trouble-free during youth
- Vessel formation occurs:
 - As needed to support body growth
 - For wound healing
 - o To rebuild vessels lost during menstrual cycles
- With aging, varicose veins, atherosclerosis, and increased blood pressure may arise

Blood Vessels in Adulthood

- Atherosclerosis begins in youth
- Consequences evident in middle to old age
- Males
- Between ages 45 and 65, more males than females experience atherosclerosis
- Experience heart disease and atherosclerosis later in life