
Bones and Skeletal Tissues

Dr. Gary Mumaugh - Campbellsville University

Cartilage

- Location and basic structure of cartilages
 - Found throughout adult body
 - Cartilage in the external ear
 - Cartilage of the nose
 - Articular cartilages and costal cartilage
 - Cartilages in the larynx and trachea
 - Intervertebral discs, pubic symphysis, and articular discs
- Perichondrium
 - Surrounds cartilages
 - Resists outward pressure
 - Functions in growth and repair of cartilage
- Consists primarily of water
- Is a resilient tissue
 - Springs back to original shape

Types of Cartilage

- All cartilages share some similarities
 - Cell type is the chondrocyte
 - Chondrocytes are located within lacunae
 - Matrix contains
 - Fibers
 - Jellylike ground substance

Hyaline cartilage

- Most abundant cartilage
- Chondrocytes appear spherical
- Collagen unit fibril is the only type of fiber in the matrix
- Ground substance holds a large amount of water
- Provides support through flexibility

Elastic cartilage

- Contains many elastic fibers
- Able to tolerate repeated bending
- · Locations—epiglottis and cartilage of external ear

Fibrocartilage

- Resists strong compression and strong tension
- An intermediate between hyaline and elastic cartilage
- Locations—pubic symphysis, menisci of knee, anulus fibrosus

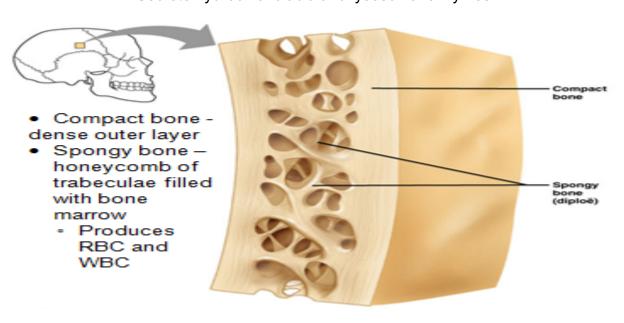
Tissues in Bone

- Bones contain several types of tissues
 - Dominated by bone connective tissue
 - Contain nervous tissue and blood connective tissue
 - Contain cartilage in articular cartilages
 - Contain epithelial tissue lining blood vessels

Function of Bones

- Support form the framework that supports the body and cradles soft organs
- Protection provide a protective case for the brain, spinal cord, and vital organs
- Movement provide levers for muscles
- Mineral storage reservoir for minerals, especially calcium and phosphorus
- Blood cell formation hematopoiesis occurs within the marrow cavities of bones

Bone Tissue


- Bone tissue
 - Organic components
- Cells, fibers, and ground substance
 - Inorganic components
- Mineral salts that invade bony matrix

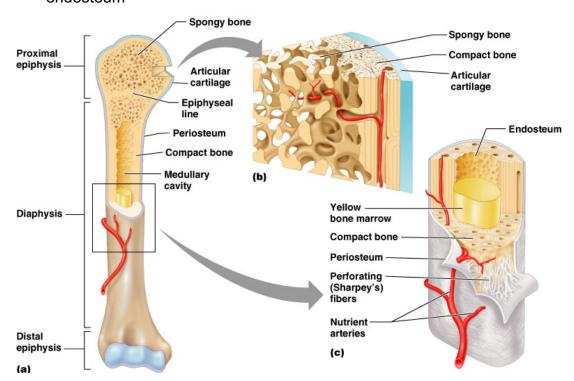
Extracellular Matrix

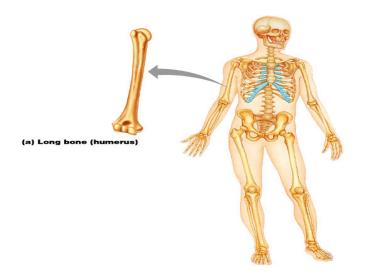
- Unique composition of matrix
 - Gives bone exceptional properties
 - 35%—organic components
- Contribute to flexibility and tensile strength
 - 65%—inorganic components
- Provide exceptional hardness, resist compression

Cells

- Three types of cells in bone produce or maintain bone
 - Osteogenic cells—stem cells that differentiate into osteoblasts
 - Osteoblasts—actively produce and secrete bone matrix
- Bone matrix is osteoid
 - Osteocytes—keep bone matrix healthy
 - Osteoclasts
 - Found within bone tissue
 - Responsible for resorption of bone
 - Are derived from a line of white blood cells
 - Secrete hydrochloric acid and lysosomal enzymes

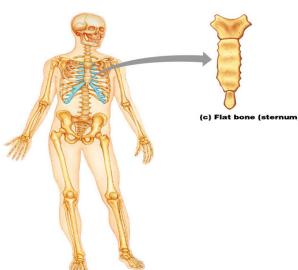
Shape of Bones

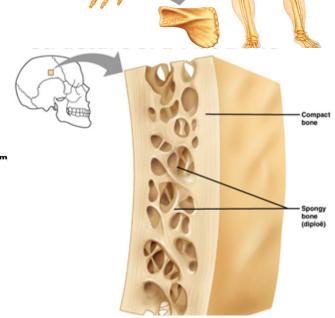

- Long bones
- Short bones
- Flat bones
- Irregular bones


Long Bones

- Long bones longer than they are wide
- Humerus, radius, ulna
- · Femur, tibia, fibula

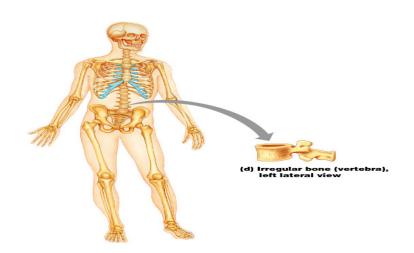
- Diaphysis
 - Tubular shaft that forms the axis of long bones
- Epiphyses
 - Expanded ends of long bones
 - Joint surface is covered with articular (hyaline) cartilage
 - Epiphyseal line separates the diaphysis from the epiphyses
- · Blood vessels—well vascularized
- Medullary cavity—hollow cavity filled with yellow marrow
- Membranes
 - Periosteum, perforating collagen fiber bundles (Sharpey's fibers), and endosteum

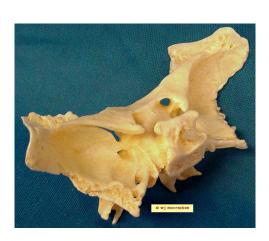



Short Bones

- Short bones
 - Bones of the wrist and ankle
 - Bones that form within tendons (e.g., patella)

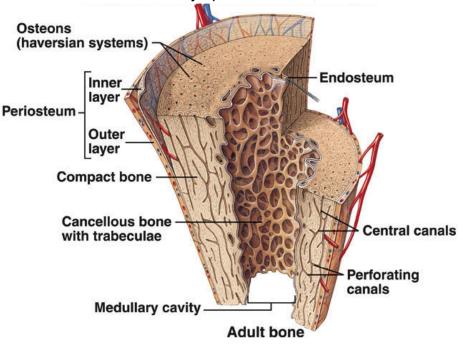
Flat Bones

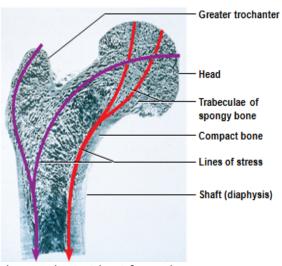

 Flat bones – thin, flattened, and a bit curved (e.g., sternum, and most skull bones)



Irregular Bones

 Irregular bones – bones with complicated shapes (e.g., vertebrae and hip bones)





Bone Membranes

- Periosteum double-layered protective membrane
 - Outer fibrous layer is dense regular connective tissue
 - Richly supplied with nerve fibers, blood, and lymphatic vessels, which enter the

Design of Spongy Bone

bone via nutrient foramina

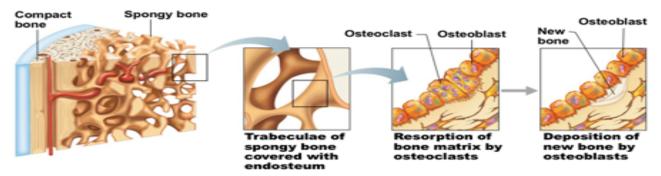
 Endosteum – delicate membrane covering internal

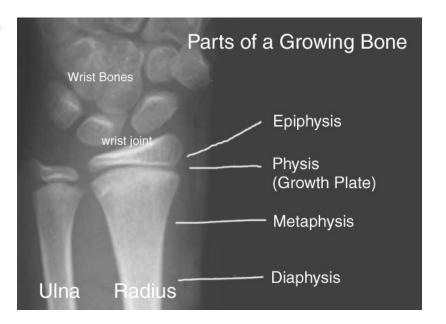
surfaces of bone

Bone Marrow

- Bone marrow general term for soft tissue that occupies the marrow cavity of a long bone and small spaces amid the trabeculae of spongy bone
- Red marrow
 - in nearly every bone in a child
 - hemopoietic tissue produces blood cells
 - in adults, found in skull, vertebrae, ribs, sternum, part of pelvic girdle, and proximal heads of humerus and femur
- Yellow marrow found in adults
 - most red marrow turns into fatty yellow marrow
 - no longer produces blood

Bone Development


- ossification or osteogenesis the formation of bone
- in the human fetus and infant, bone develops by two methods:
 - intramembranous ossification
 - endochondral ossification


Bone Growth

- ossification continues throughout life with the growth and remodeling of bones
- bones grow in two directions: length and width
- · bone elongation
 - Epiphyseal plate a region of transition from cartilage to bone
 - functions as growth zone where the bones elongate
 - consists of typical hyaline cartilage in the middle
 - with a transition zone on each side where cartilage is being replaced by bone

Bone Remodeling

- Bone is a dynamic living tissue
 - 500 mg of calcium may enter or leave the adult skeleton each day
 - Bone matrix and osteocytes are continually removed and replaced
 - Cancellous bone of the skeleton is replaced every 3–4 years
 - Compact bone is replaced every 10 years
- Bone deposit and removal
 - Occurs at periosteal and endosteal surfaces
- Bone remodeling
 - Bone deposition—accomplished by osteoblasts
 - Bone reabsorption—accomplished by osteoclasts

Postnatal Growth of Endochondral Bones

- During childhood and adolescence:
 - Bones lengthen entirely by growth of the epiphyseal plates
 - Cartilage is replaced with bone connective tissue as quickly as it grows
 - Epiphyseal plate maintains constant thickness
 - Whole bone lengthens

Postnatal Growth of Endochondral Bones

- As adolescence draws to an end:
 - Chondroblasts divide less often
 - Epiphyseal plates become thinner
 - Cartilage stops growing
 - Replaced by bone tissue
- · Long bones stop lengthening when diaphysis and epiphysis fuse

Postnatal Growth of Endochondral Bones

- Growing bones widen as they lengthen
 - Osteoblasts—add bone tissue to the external surface of the diaphysis
 - Osteoclasts—remove bone from the internal surface of the diaphysis
- Appositional growth—growth of a bone by addition of bone tissue to its surface

Factors Affecting Bone Growth

- Heredity
- Nutrition
 - Calcium, phosphorus, protein, Vitamin D, A, C
- Hormones
- · Exercise or "stress"

Without bones becoming weight bearing, they lose calcium

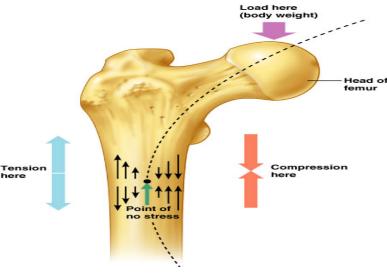
Hormonal Regulation of Bone Growth During Youth

- During infancy and childhood, epiphyseal plate activity is stimulated by growth hormone
- During puberty, testosterone and estrogens:
 - Initially promote adolescent growth spurts
 - Cause masculinization and feminization of specific parts of the skeleton
 - Later induce epiphyseal plate closure, ending longitudinal bone growth

Importance of Ionic Calcium in the Body

- · Calcium is necessary for:
 - Transmission of nerve impulses
 - Muscle contraction
 - Blood coagulation
 - Secretion by glands and nerve cells
 - Cell division

Response to Mechanical Stress


- Wolff's law a bone grows or remodels in response to the forces or demands placed upon it
- Observations supporting Wolff's law include
 - Long bones are thickest midway along the shaft (where bending stress is greatest)
 - Curved bones are thickest where they are most likely to buckle

- Superficial surfaces of bones reflect stresses on them
- There are three broad categories of bone markings:
 - Projections for muscle attachment
 - Surfaces that form joints
 - Depressions and openings

Bone Fractures (Breaks)

- Bone fractures are classified by:
 - The position of the bone ends after fracture
 - The completeness of the break
 - The orientation of the bone to the long axis
 - Whether or not the bones ends penetrate the skin
- Types of Bone Fractures
 - Compound (open) bone ends penetrate the skin
 - Simple (closed) bone ends do not penetrate the skin
 - Greenstick incomplete fracture where one side of the bone breaks and the other side bends; common in children
 - Comminuted bone fragments into three or more pieces; common in the elderly
 - Compression bone is crushed; common in porous bones

Comminuted

Spiral

Compound

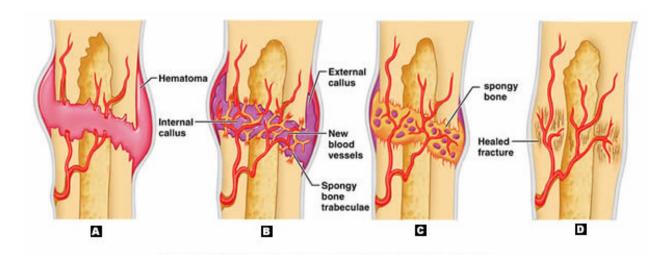
Stages in the Healing of a Bone Fracture

Oblique

Hematoma formation

 Torn blood vessels hemorrhage
 A mass of clotted blood (hematoma) forms at the fracture site
 Site becomes swollen, painful, and inflamed

 Fibrocartilaginous callus forms


 Bony callus formation

 Bone callus begins 3-4 weeks after injury, and continues until firm union is formed 2-3 months later

D

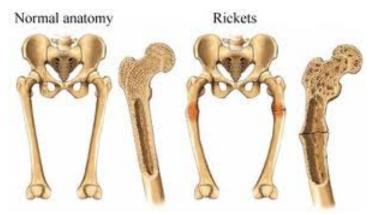
Bone remodeling

- Excess material on the bone shaft exterior and in the medullary canal is removed
- Compact bone is laid down to reconstruct shaft walls

The Skeleton Throughout Life

- · Cartilage grows quickly in youth
- Skeleton shows fewer chondrocytes in the elderly
- Bones are a timetable
 - Mesoderm Gives rise to embryonic mesenchyme cells
 - Mesenchyme Produces membranes and cartilage
 - Membranes and cartilage ossify

The Skeleton Throughout Life

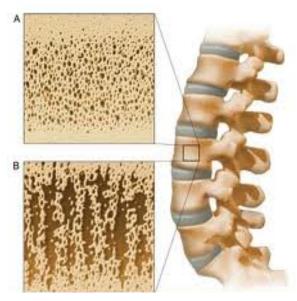

- Skeleton grows until the age of 18–21 years
- In children and adolescents, bone formation exceeds rate of bone reabsorption
- In young adults, bone formation and bone reabsorption are in balance
- In old age, reabsorption predominates
- · Bone mass declines with age

Homeostatic Imbalances

- Osteomalacia
 - Bones are inadequately mineralized causing softened, weakened bones
 - Main symptom is pain when weight is put on the affected bone
 - Caused by insufficient calcium in the diet, or by vitamin D deficiency

Rickets

- Bones of children are inadequately mineralized causing softened, weakened bones
- Bowed legs and deformities of the pelvis, skull, and rib cage are common
- Caused by insufficient calcium in the diet, or by vitamin D deficiency



Osteopenia

Normal bone demineralization seen after 35-40 years old

Osteoporosis

- Spongy bone of the spine is most vulnerable
- Occurs most often in postmenopausal women
- Bones become so fragile that sneezing or stepping off a curb can cause fractures
- Osteoporosis Treatment
 - Calcium and vitamin D supplements
 - 1200 mg. of calcium per day
 - Increased weightbearing exercise
 - Hormone (estrogen) replacement therapy (HRT) slows bone loss
 - Natural progesterone cream prompts new bone growth

