Infectious Diseases – Part 1

Dr. Gary Mumaugh

Antibacterial, Antiviral & Antifungal Therapy

Principles of antibiotic treatment

- In western care, the goal is to start first with broad-spectrum antibiotics, then switch to narrower within three days when C & S (cultures and sensitivities) have been identified
- "Scattergun approach" is common in medical practice
 - The hope that the antibiotic prescribed may be able to cure the infections without any lab data to support it
 - This approach is largely due to the fact that the patient expects an RX at every visit
 - Great numbers of patients are given antibiotics that may not have been necessary or appropriate
 - One or two antibiotics cannot fulfill all the treatment goal
 - Many providers tend to have a small number of "favorite" antibiotics that they will prescribe for most infections, often without checking C & S to determine if treatment is appropriate
 - o Increased numbers of resistant strains are being discovered daily

Narrow spectrum to broad spectrum

- Narrow-spectrum
 - o Penicillin, Oxacillin, Keflin, Keflex, Gentamycin, Vanomycin, flagyl
- Moderately broad-based spectrum
 - o Ampicillin, Ticarcillin, Piperacillin, Kefzol, Cipro, Bactrim, Spectrum
- Broad-spectrum
 - Ampicillin-sulbactam, Amoxicillin, Ceftriaxone, Tetracylcline, Doxycycline, Levofloxin
- Very broad-spectrum
 - Ticarcillin, Imipenim, Moxifloxacin

The cost of antibiotics

- Orals can cost as little as \$5-\$40 for 10 days
 - Tetracycline, Erythromyocin, Keflex
 - High end cost of \$160-#200 for 10 days
 - Azithromycin, Clarithromycin, Moxafloxin
- IV antibiotics
 - From \$20-\$60 per day on low end
 - To up to \$200 per day on the high end

Respiratory and EENT Infections

Respiratory System Infections

- Encompass enormous variety of illnesses
 - Trivial to fatal
- Divided into infections of
- Upper respiratory
 - Head and neck
 - o Uncomfortable but generally not life threatening
 - Lower respiratory
 - Chest
 - More serious
 - Can be life threatening
 - Particularly in the immunocompromised

Normal Microbiota

- Nasal cavity, nasopharynx and pharynx colonized by numerous bacteria
 - Other sites are sterile
 - Numerous classes of organisms are present from aerobes to anaerobes
- Conjunctiva commonly have no bacteria
 - Organisms that do invade are swept into the nasolacrimal duct (tear duct) and nasopharynx

Genus	Characteristics	Comments
Staphylococcus	Gram-positive cocci in clusters	Commonly includes the potential pathogen <i>Staphylococcus aureus,</i> inhabiting the nostrils. Facultative anaerobes.
Corynebacterium	Pleomorphic, Gram-positive rods; non-motile; non-spore-forming	Aerobic or facultatively anaerobic. Diphtheroids include anaerobic and aerotolerant organisms.
Moraxella	Gram-negative diplococci and diplobacilli	Aerobic. Some microscopically resemble pathogenic <i>Neisseria</i> species such as <i>N. meningitidis.</i>
Haemophilus	Small, Gram-negative rods	Facultative anaerobes. Commonly include the potential pathogen <i>H. influenzae.</i>
Bacteroides	Small, pleomorphic, Gram-negative rods	Obligate anaerobes.
Streptococcus	Gram-positive cocci in chains	α (especially viridans, meaning green hemolysis), β (clear hemolysis), and γ (non-hemolytic) types; the potential pathogen, <i>S. pneumoniae</i> is often present. Aerotolerant (obligate fermenters).

Influenza

- A major cause of death worldwide
 - o Bird flu pandemic at the end of WWI caused 50 million worldwide deaths
 - o Current bird flu beginning to see a resurgence
 - Resultant new strains are what causes pandemics
- S&S
 - Dramatic and abrupt with malaise, chills, cough, fever (3 days), rhinorrhea, cervical adenopathy
 - Virus kills the respiratory epithelium causing pulmonary function decline
 - Major complication is viral pneumonia
- Mortality is high and has not been reduced for decades
- Diagnosis
 - Diagnosis is usually confirmed by isolation via blood work
 - Difficult to distinguish from other respiratory diseases
- Western treatment
 - Never use ASA with flu which can cause Reye's syndrome (fatty liver infiltration, mental changes, lethargy, delirium, coma
 - Prevention has been shown to be the best defense
 - Amantidine and Zamanavir (nasal inhalers) are sometimes given early with mixed results

	Influenza		
 Influenza virus is inhaled and carried to the lungs. 	6	Symptoms	Fever, muscle aches, lack of energy, headache, sore throat, nasal
② Viral hemagglutinin attaches to specific receptors on ciliated	000	Incubation period	1 to 2 days
epithelial cells, the viral envelope		Causative agent	Influenza virus, an orthomyxovirus
fuses with the epithelial cell, and the virus enters the cell by endocytosis.	0 ^L	Pathogenesis	Infection of respiratory epithelium;
③ Host cell synthesis is diverted to synthesizing new virus.			infect other cells. Secondary bacterial infection results from damaged
④ Newly formed virions bud from informed calls, they are released by	\downarrow		mucociliary escalator.
viral neuraminidase and infect	6	Epidemiology	Antigenic drift and antigenic shift thwart immunity.
secreting, and alveolar cells.		Prevention and	Vaccines usually 80% to 90%
(b) Infected cells ultimately die and slough off; recovery of the mucociliary escalator may take weeks.		treatment	effective. Amantadine and rimantadine are sometimes effective for preventing type A but not type B virus disease; neuraminidase inhibitors effective against both A and
⑥ Secondary bacterial infection of the lungs, ears, and sinuses is common.			B viruses. These medications somewhat effective for treatment when given early in the disease.
⑦ The virus exits with coughing.			

Bird Flu (H5N1 virus)

- First noted in China in1996 among birds
 - Has caused deaths of 140 million birds
 - Spread to humans via saliva, blood and contact with bird droppings less than 150 human cases
 - o 50% human fatality
 - Epidemiologists expect a genetic mutation with possible transmission from human to human
- S&S
 - o Similar flu symptoms
- Diagnosis
 - Lab conformation
- TX
 - o Tamiflu and Relenza
 - o Best defense is vaccine

Swine Flu (H1N1) Virus

- Is a subtype of influenza A virus and the most common cause of influenza (flu) in humans.
- Some strains of H1N1 are endemic in humans and cause a small fraction of all influenza-like illness and a small fraction of all seasonal influenza.
- Swine flu (swine influenza) is a respiratory disease caused by viruses that infect the respiratory tract of pigs and result in nasal secretions, a barking-like cough, decreased appetite, and listless behavior
- H1N1 flu is contagious
- H1N1 flu is NOT caused by eating pork or pork products
- Illness with the new H1N1 flu virus has ranged from mild to severe
- About 70 percent of people who have been hospitalized with H1N1 flu have had one or more medical conditions that placed them in the "high risk" category
 - These include pregnancy, diabetes, heart disease, asthma and kidney disease.
- Seniors (adults 65 years and older) are prioritized for antiviral treatment to limit risk of complication if they get flu
- Symptoms of Seasonal and H1N1 Flu

Seasonal Flu vs. H1N1 Flu Symptoms

- Seasonal flu
 - Fever
 - Coughing and/or sore throat
 - Runny or stuffy nose
 - Headaches and/or body aches
 - o Chills
 - o Fatigue
- H1N1 Flu
 - o Similar to seasonal flu, but symptoms may be more severe.
 - There may be additional symptoms. A significant number of H1N1 flu cases:
 - Vomiting
 - o Diarrhea

Emergency Warning Signs of Children vs. Adults

- In Children
 - Fast breathing or trouble breathing
 - Bluish or gray skin color
 - Not drinking enough fluids
 - Severe or persistent vomiting
 - Not waking up or not interacting
 - Being so irritable that the child does not want to be held
 - Flu-like symptoms improve but then return with fever and worse cough

Emergency Warning Signs of Children vs. Adults - continued

- In Adults
 - Difficulty breathing or shortness of breath
 - Pain or pressure in the chest or abdomen
 - Sudden dizziness
 - Confusion
 - Severe or persistent vomiting
 - Flu-like symptoms improve but then return with fever and worse cough

Diagnosis of H1N1

- If the symptoms indicate the presence of the H1N1 flu, the physician usually performs a nasopharyngeal swab test to determine if the H1N1 virus is present. If it is present, the flu is diagnosed
- The test is performed by inserting a thin cotton swab two inches into the nostril, aimed towards the throat.

Treatment of H1H1

- Antiviral Therapy
 - Efficacy Therapy should be started as soon as possible, since evidence of benefit is strongest for seasonal influenza when treatment is started within 48 hours of illness onset
 - At this time, treatment with oseltamivir (trade name Tamiflu®) or zanamivir (trade name Relenza®) is recommended for all people with suspected or confirmed influenza who require hospitalization
 - The recommended duration of treatment is five days

Conjunctivitis - "Pink Eye"

- Rubbing causes transfer to other eyes
- Tears contain antibacterial agents
- Viral conjunctivitis
 - The most common and most contagious
- Bacterial conjunctivitis
 - o Is common in developing countries with copious amounts of pus
- Allergic conjunctivitis
 - o From sensitivity to environmental antigens
- Symptoms Pinkeye
 - Increased tears and redness
 - o Swelling eyelids
 - Sensitivity to bright light
 - Large amounts of pus
- Pathogenesis
 - Few details known about pathogenesis of bacterial conjunctivitis
 - Most likely from airborne respiratory droplets
 - Resist destruction by lysozyme

Conjunctivitis – continued

- Prevention
 - Prevention is directed towards
 - Removal of infected individuals from school or day care
 - Hand washing
 - Avoid rubbing or touching eyes
 - Avoid sharing towels
 - Treatment is achieved through eye drops or ointments containing antibacterial medications

Keratitis – corneal infection

- The most common form from Staphylococci
- Viral keratitis
 - o Caused by herpes simplex resulting in corneal ulcer
 - Giving cortisone or eye drops with cortisone can worsen the condition to blindness
- Parasitic keratitis
 - o Commonly seen in contact lens wearers who wash their lens with tap water
- Reactive keratitis
 - Not caused by an infection
 - Thought to be an autoimmune reaction and resolves in 2-3 years with considerable problems
 - Also caused by towel slapping in locker rooms

Otitis externa – "swimmers ear"

- Is usually a mild annoyance
- Can be more severe in swimmers who swim daily
- Water trapped in the ear causes irritation, low grade infection and itching
- S&S
 - Otalgia and otorrhea with pruritis to severe pain, swelling can occlude canal with hearing loss
- DX
 - Elevated ESR, bone scan & CT scan to diagnose osteomyelitis
- TX
 - Mild cases polymycin and cortisone drops
 - Severe cases IV antibiotics and debridement

Otitis externa – "swimmers ear"

Otitis media – middle ear infection

- Common in preschool and school age children
- Eustachian tube development
- Bacteria from mouth and pharynx travel up the tube to the middle ear
- S&S
 - Fever, vertigo, tinnitus and pain, nysatagmus
- DX
 - Requires the presence of fluid & redness or inflammation
- TX
- o Amoxicillin 10 days, Augmentin in severe cases

Two Types of Otitis Media

- Acute Otitis Media
 - o Inflammatory symptoms of pain, fever, malaise
 - 80% of cases resolve in 24 hours

- Otitis media continued
- Serous Otitis Media
 - Presents with effusion of fluid in the middle ear
 - Most frequent diagnosis in children under 15
 - Studies have shown no bacterial pathogen 65% of the time
 - Serous fluid may remain for up to 12 weeks after an acute episode
- Otitis Media history
 - History begins with resolution of signs and symptoms including effusion
- Clinical Manifestations
 - Uncomplicated Otitis Media
 - Unilateral
 - Mild fever of no fever
 - No perforation of eardrum, little or no membrane bulging
 - Well appearance
 - Mild pain
- Clinical Manifestations
 - Complicated Otitis Media
 - Perforation of tympanic membrane
 - Suppuration
 - Mastoiditis
 - High Fever
 - Sick appearance
 - Severe pain
- Anatomic Considerations
 - Eustachian tube in infants and small children is very small and narrow. It connects the inner ear to back of nose
 - In infants, the tube is horizontal and does not drain well
 - As they grow, so grows the tube, allowing for better drainage
 - With less retained fluid, pathogens have less opportunity to cause infection

Sinusitis

- An infection in one or more oral-nasal sinuses
- Symptoms Sinusitis
 - o Pain and pressure
 - Generally localized to involved sinus
 - Tenderness over sinus
 - o Headache
 - o Severe malaise
- Pathogenesis
 - Begins with infection of nasopharynx
 - Spreads upwards to sinuses
 - o Pathogenesis mechanism much like that of otitis media
- Prevention
 - o There are no proven preventative measures for sinusitis

Sinusitis - continued

- Treatment is directed at support care
 - Nasal decongestants, Augmentin
 - o Decongestants and antihistamines are generally discouraged
 - Ineffective and can be harmful

Mastoiditis

- Infection of the air cells of the mastoid process
- Severe cases can lead to brain abscess
- S&S
 - o Severe pain most noticeable with otorrhea
 - Mimics severe supurative otitis media
- DX
 - Dx by x-rays
 - o DD from otitis media by duration and intensity
- TX
 - \circ $\;$ Augmentin and possible admission with IV $\;$

Pharyngitis – common sore throat

- S&S
 - Sore throat, discharge, dry cough, malaise, low grade fever, can have a fulminating infection
- Viral pharyngitis
 - o 85% of time in adults
 - Children 50% viral and 50% bacterial
 - o Common causes rhinovirus, coronavirus, adenovirus, herpes, Epstein-Barr
- Bacterial pharyngitis
 - DD with purulent exudates and tender adenopathy, headache and fever common
 - Usually caused by streptococcus Dx with throat culture
 - Penicillin in tx for bacterial, but not for viral

Adenoviral Pharyngitis

- Symptoms
 - o Runny nose
 - o Fever
 - Sore throat
 - Often accompanied with pus on the pharynx and tonsils
 - o Lymph nodes in neck enlarged and tender
 - o Certain strains of virus cause hemorrhagic conjunctivitis
 - Mild cough is common with infection
 - Cough may worsen; indication of complicating disease
 - Infection usually resolves in 1 to 3 weeks
 - With or without treatment
- Causative Agent Adenovirus
 - 45 types infect humans
 - Non-enveloped
 - Double-stranded DNA genome
 - Remains infectious in environment for extended periods
 - Transmitted easily on medical instruments
 - o Inactivated easily with heat and various disinfectants
- Pathogenesis
 - Virus infects epithelial cells
 - Attaches to specific surface receptors
 - Multiplies in cell nucleus
 - Cells escape to epithelial surface
 - Cell destruction initiates inflammation
 - Different viruses affect different tissues
 - Adenovirus type 4 causes sore throat and lymph node enlargement
 - Adenovirus type 8 causes extensive eye infection

Adenoviral Pharyngitis - continued

- Epidemiology
 - Human is only source of infection
 - Common among school children
 - Usually sporadic; however, outbreaks do occur
 - Most common in winter and spring
 - Summer outbreaks linked to inadequately chlorinated swimming pools
 - Virus spread by respiratory droplets
 - Epidemic spread promoted by high number of asymptomatic carriers
- Prevention and Treatment
 - \circ Prevention is the same as the common cold
 - There is no treatment
 - Patients usually recover uneventfully
 - Bacterial secondary infections may occur requiring antibiotics for treatment
- Antibiotic Dosage for Recurrent Pharyngitis

Drug	Adult Dosage	Pediatric Dosage	Duration
Clindamycin	600 mg orally divided in 2-4 divided doses	20-30 mg/kg/ day in 3 divided doses (max:1.8 g/day)	10 days
Amoxicillin- clavulanate	500 mg twice daily	40 mg/kg/day in 3 divided doses	10 days
Penicillin benzathine	1.2 million units intra- muscularly for 1 dose	0.6 million units for under 27 kg (50,000 units/kg)	1 dose
Penicillin VK with rifampin	Rifampin: 300 mg PO BID	20 mg/kg/d divided in two equal doses	Last 4 days of treatment with 10 day therapy of penicillin VK

Strep Throat (Streptococcal Pharyngitis)

Streptococcal Pharyngitis

- Symptoms Characterized by
 - Difficulty swallowing
 - o Fever
 - Red throat with pus patches
 - Enlarged tender lymph nodes
 - Localized to neck
 - Most patients recover uneventfully in approximately a week
- Pathogenesis
 - Causes a wide variety of illnesses
 - Due to bacteria-producing enzymes and toxin that destroy cells
- Complications of infection can occur during acute illness
- · Examples include scarlet fever and quinsy
- Certain complications can develop late
 - Acute glomerulonephritis
 - o Acute rheumatic fever

Streptococcal Pharyngitis - continued

- Epidemiology
 - Spread readily by respiratory droplets
 - Especially in range of 2 to 5 feet
 - Infect only humans under natural conditions
 - \circ $\,$ Nasal organism spreads more effectively than pharyngeal carriers
 - Peak incidence occurs in winter or spring
 - Highest in grade school children
- Prevention
 - No vaccine available
 - Adequate ventilation
 - Avoid crowds
 - Sore throats in presence of fever should be cultured for prompt treatment
 - Prompt treatment is essential to prevent complications
- Treatment
 - Confirmed strep throat treated with 10 days of antibiotics
 - Penicillin or erythromycin are drugs of choice
 - Eliminates organisms in 90% of cases

Peri-tonsillar abscess

- Were very common before antibiotic tx
- S&S
 - Dramatic throat pain on the abscess side with high fever, prostration and dyspnea
- DX
 - Pharyngoscopic examination
- TX
 - Surgical drainage of abscess
 - T & A if >3 episodes of tonsillitis in 1 year
 - Very common from 1940 to1970

Common Cold

- Symptoms
- o Malaise
- Scratchy mild sore throat
- o Runny nose
- Cough and hoarseness
- Nasal secretion
 - Initially profuse and watery
 - Later, thick and purulent
 - No fever
 - Unless complicated with secondary infection
- o Symptoms disappear in about a week

Common Cold - continued

- Pathogenesis
 - Virus attaches to specific receptors on respiratory epithelial cells and multiplies in cells
 - Large number of viruses released from infected cells
 - Injured cells cause inflammation which stimulates profuse nasal secretion, sneezing and tissue swelling
 - Infection is halted by inflammatory response, interferon release and immune response
 - Infection can extend to ears, sinuses and lower respiratory tract before stopping
- Epidemiology
 - Humans are only source for cold virus
 - Close contact with infected person or secretions usually necessary for transmission
 - High concentrations are found in nasal secretions during first 2 or 3 days of a cold
 - Young children transmit cold virus easily
 - Due to lack of good hygiene
 - No reliable relationship between exposure to cold temperature and development of a cold
- Prevention
 - No vaccine
 - Too many different types of rhinovirus
 - Makes vaccination impractical
 - Prevention directed at
 - Hand washing
 - Keeping hands away from face
 - Avoiding crowds during times when colds are prevalent
- Treatment
 - Antibiotic therapy is ineffectual
 - Certain antiviral medications show promise
 - Must be taken at first onset of symptoms
 - Treatment with over-the-counter medications may prolong duration due to inhibition of inflammation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.				
TABLE 22.5 T	he Common Cold			
Symptoms	Scratchy throat, nasal discharge, malaise, headache, cough			
Incubation period	1 to 2 days			
Causative agent	Mainly rhinoviruses—more than 100 types; many other viruses, some bacteria			
Pathogenesis	Viruses attach to respiratory epithelium, starting infection that spreads to adjacent cells; ciliary action ceases and cells slough; mucus secretion increases, and inflammatory reaction occurs; infection stopped by interferon release, cellular and humoral immunity.			
Epidemiology	Inhalation of infected droplets; transfer of infectious mucus to nose or eye by contaminated fingers; children initiate many outbreaks in families because of lack of care with nasal secretions.			
Prevention and treatment	Handwashing; avoiding people with colds and touching face. No generally accepted treatment			

Pulmonary Infections

Pneumonia

- 2-3 million cases in USA yearly causing 45,000 deaths
 - Mortality is 4 times higher over 65
- Predisposing factors
 - Preceded by viral URI causing cilia damage and the production of serous exudates
 - Smoking impairs mucociliary escalation
 - Elderly and compromised immune systems
 - HIV, AIDS, sickle cell disease, diabetes
 - Organ transplant patients
 - o Close indoor quarters in the winter
 - Hypostatic pneumonia can occur from constant laying down

Acute vs. Chronic Pneumonia

- Acute
 - Symptoms within 1-2 days after exposure
 - Shaking, fever, chills, prostration, dyspnea
 - o Common cause of death before antibiotics
- Chronic
 - More slow progressive form
 - Are most viral and fungal pneumonias
 - May last several weeks to months
- Dx based on symptoms
 - o Typical pneumonia
 - Rapid onset, productive cough, fever
 - X-ray changes

Pneumonia – continued

- Atypical pneumonia
 - Common with most viral pneumonias
- Dx based on part of the lungs affected
 - Lobar pneumonia
 - "Classic" pneumonia in which all the alveoli sacs in the lobe are pus filled or fluid filled
 - o Bronchopneumonia
 - Patchy infiltration throughout the bronchi and bronchioles
 - Interstitial pneumonia
 - In the connective tissue between the alveoli with granular infiltration
 - Lung abscess
 - Organisms destroy tissue and form pus abscess
 - o Empyema
 - Prurulent infection in the pleural space
 - Nodular lung infections
 - TB, coccidiomycosis and histoplasmosis cause nodular infiltrations
- Dx according to where the pneumonia was acquired
 - Community acquired
 - Acquired anywhere in the community, but not in a hospital
 - Nosocomial
 - Acquired in a hospitalized setting
- Dx according to etiologic agent
 - Pneumococcal pneumonia
 - Classic bacterial pneumonia
 - AKA streptococcal pneumonia
 - Aspiration pneumonia
 - Common in elderly from swallowing gastric or food contents in the trachea
 - Often vomiting with loss on consciousness
 - Hemophilus pneumonia
 - Common on smokers with COPD
 - Staphlococci pneumonia
 - Virulent infection often after influenza
- Dx according to etiologic agent continued
 - Viral pneumonia
 - Most common form
- S & S of pneumonia
 - Cough, sore throat, fever, chills, rapid breathing, wheezing, dyspnea, chest or abdominal pain, exhaustion, vomiting
- DX of pneumonia
 - Medical history, physical examination, x-ray

Pneumonia – continued

- TX of pneumonia
 - o Antibiotics, respiratory therapy with oxygen
 - Amoxicillin is first-line therapy
 - Steroids for wheezing
 - Expectorates and lots of fluids
 - Codeine for severe pain
- Pneumonia is referred to as consolidation on x-ray reports
 - Lung consolidation occurs when the air that usually fills the small airways in your lungs is replaced with something else.
 - The air may be replaced with a fluid (such as pus, blood, or water) or a solid(such as stomach contents or cells)
 - The liquid can be pulmonary edema, inflammatory exudate, pus, inhaled water, or blood (from bronchial tree or hemorrhage from a pulmonary artery).
 - **Consolidation must be present to diagnose pneumonia**: the signs of lobar pneumonia are characteristic and clinically referred to as consolidation.

Tuberculosis - TB

- One third of world population have active or latent infection resulting in 3 million deaths per year
- Pathology and course of TB
 - A chronic destruction of the lung with scarring
 - Slow progressive lung damage and possible death
 - Systemic symptoms of wasting, fatigue, night sweats, appetite loss used to be called consumption
- S&S
 - Cough, sputum, hemoptysis, TB spread to organs leads to destruction of organs and organ systems
- DX of classic triad
 - Lung infiltrate, calcified node enlargement, pleural effusion
- TX of TB
 - When it comes to treatment of TB, think slow
 - Slow growth of organisms, slow destruction of lung tissue, prolonged treatment and slow recovery
 - Lasts at least year and is treated with extensive drug therapy with isoniazid and rifampin
- Symptoms
 - Chronic illness
 - Symptoms include
 - Slight fever with night sweats
 - Progressive weight loss
 - Chronic productive cough
 - Sputum often blood streaked
- Causative Agent Mycobacterium tuberculosis
 - o Gram-positive cell wall type
 - Slender bacillus
 - Slow growing
 - Generation time 12 hours or more
 - Resists most prevention methods of control
- Pathogenesis
 - Usually contracted by inhalation of airborne organisms
 - o Bacteria are taken up by pulmonary macrophages in the lungs
 - Resists destruction within phagocyte
- Pathogenesis
 - Organisms are carried to lymph nodes
 - About 2 weeks post infection intense immune reaction occurs
 - Macrophages fuse together to make large multinucleated cell
 - Macrophages and lymphocytes surround large cell
 This is an effort to wall off infected tissue
 - Activated macrophages release into infected tissue
 - Causes death of tissue resulting in formation of "cheesy" material

Tuberculosis – TB - continued

- Epidemiology
 - Estimated 10 million Americans infected
 - Rate highest among non-white, elderly poor people
 - Small infecting dose
 - As little as ten inhaled organisms
 - Factors important in transmission
 - Frequency of coughing, adequacy of ventilation, degree of crowding
- Tuberculin test used to detect those infected
 - \circ $\,$ Small amount of tuberculosis antigen is injected under the skin $\,$
 - Injection site becomes red and firm if infected
 - Positive test does not indicate active disease
- Prevention
 - Vaccination for tuberculosis widely used in many parts of the world
 - Vaccine not given in United States because it eliminates use of tuberculin test as diagnostic tool
- Treatment
 - Antibiotic treatment is given in cases of active TB
 - Two or more medications are given together to reduce potential antimicrobial resistance
 - Antimicrobials include
 - Rifampin and Isoniazid (INH)
 - Both target actively growing organisms and metabolically inactive intracellular organisms
 - Therapy is pronged
 - Lasting at least 6 months

- Airborne Mycobacterium tuberculosis bacteria are inhaled and lodge in the lungs.
- ② The bacteria are phagocytized by lung macrophages and multiply within them, protected by lipidcontaining cell walls and other mechanisms.
- ③ Infected macrophages are carried to various parts of the body such as the kidneys, brain, lungs, and lymph nodes; release of *M. tuberculosis* occurs.
- Delayed hypersensitivity develops; wherever infected *M. tuberculosis* has lodged, an intense inflammatory reaction develops.
- (5) The bacteria are surrounded by macrophages and lymphocytes; growth of the bacteria ceases.
- (6) Intense inflammatory reaction and release of enzymes can cause caseation necrosis and cavity formation.
- ⑦ With uncontrolled or reactive infection, *M. tuberculosis* exits the body through the mouth with coughing or singing.

luberculosis		
34	Symptoms	Chronic fever, weight loss, cough, sputum production
To a	Incubation period	2 to 10 weeks
	Causative agent	Mycobacterium tuberculosis; unusual cell wall with high lipid content
	Pathogenesis	Colonization of the alveoli incites inflammatory response; ingestion by macrophages follows; organisms survive ingestion and are carried to lymph nodes, lungs, and other body tissues; tubercle bacilli multiply; granulomas form.
	Epidemiology	Inhalation of airborne organisms; latent infections can reactivate.
3(5) 4	Prevention and treatment	BCG vaccination, not used in the United States; tuberculin (Mantoux) test for detection of infection, allows early therapy of cases; treatment of all high-risk cases including young people with positive tests and individuals whose skin test converts from negative to positive. Treatment: two or more antitubercular medications given simultaneously long term, such as isoniazid (INH) and rifampin: DOTS.