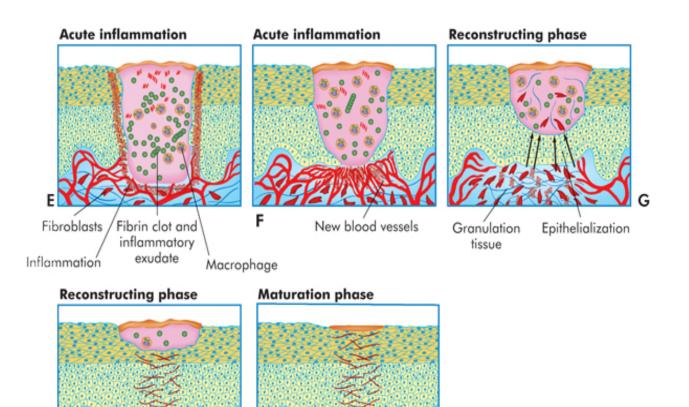

Tissue Healing Dr. Gary Mumaugh – Campbellsville University


Healing

- Process of restoring damaged cells/ tissues
- Often involves restoration of structure and/or function of damaged tissues

Components of Healing

- Regeneration- Damaged cells are replaced by parenchymal cells (neighboring functional cells)
- Repair- Fibrous scar tissue fills gap left by damaged tissue
- Revascularization- New vasculature must infiltrate new tissues
- Surface Restoration- New epithelium often needs to form over damaged tissues/organs

Collagen fibers

Scar tissue

Regeneration

- Cells dividing (via mitosis) to replace dead/damaged cells.
- Mitosis continues until new tissue approx. the volume of tissue lost to injury, assumes normal function, ideal response
- Labile Tissues
 - o Consist of rapidly dividing cells
 - > 1.5% of cells are in mitosis
 - o e.g. red bone marrow, skin, mucous membranes, etc.
- Stable Tissues
 - Cells divide more slowly (more functional)
 - < 1.5% of cells are in mitosis
 - o e.g. many organs, fibroblasts, smooth muscle, etc.
- Permanent Tissues
 - $\circ~$ No "real" regeneration- no mitosis often replaced by scar tissue $\rightarrow~$ functional loss
 - o e.g. neurons, cardiac and skeletal muscle cells

Repair

- Depositing strong, fibrous (scar) tissue to replace damaged cells/tissues that can't regenerate
- Fibrosis- Fibroblasts lay down much collagen that forms a scar
- **Procollagen** fundamental subunit enzymatically altered to be linked to form collagen
- Collagen- Protein complex that contributes to many load-bearing structures in the body
 - Great tensile strength- ability to resist being pulled apart
- Ground Substance + Collagen = Scar Tissue
- Clot- Mass of fibrin (fibrous protein) and RBCs (and other tissue debris)
- **Organization** Process of clot being broken down (via phagocytosis) and replaced by scar

Revascularization

- Restoration of blood supply to damaged tissue (a.k.a. **Angiogenesis**)
 - Granulation Tissue
 - Pink, granular looking tissue
 - Infiltrates exudate at site of injury
 - Newly developing capillaries forming from uninjured vessels near injury (chemotaxis)
- **Buds** Projections from endothelial cells lining undamaged vessels, form blood and lymphatic vessels
- May differentiate into venules or arterioles
- Eventually "scaled back" following repair
- May also involve re-infiltration of other types of tissue (e.g. nervous, lymphatic, etc.)
- New scar tissue initially pick appearance (increased blood supply); old scar more pale after vascularization decreased

Surface Restoration

- Re-establishment of epithelial tissue "coverings"
 - Zone of active mitosis develops near wound edge
 - Newly formed cells "migrate" over damaged surface while secreting new basement membrane
 - Migration continues until edges migrating over the damaged tissue have come together
 - Become anchored to basement membrane once wound is closed

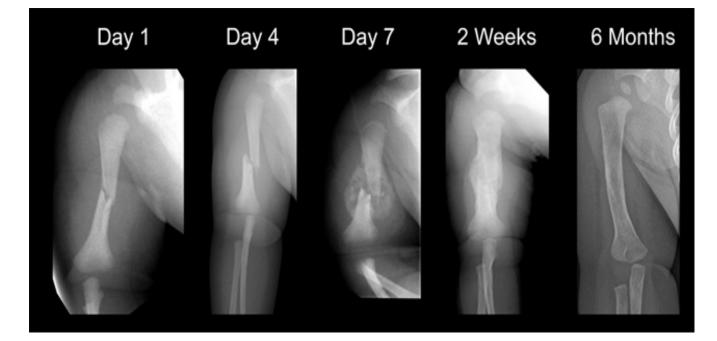
Skin Injuries: Primary Healing

- Involves wounds where edges can come together (i.e. incisions)
- Clotting stops initial blood loss and prevents infections and dehydration
- Repair, revascularization, and surface restoration starts "under" clot \rightarrow scar tissue
- Melanocytes are NOT replaced (so new skin looks lighter in color)
- Scar tissue usually never reaches original skin's strength

Skin Injuries: Secondary Healing

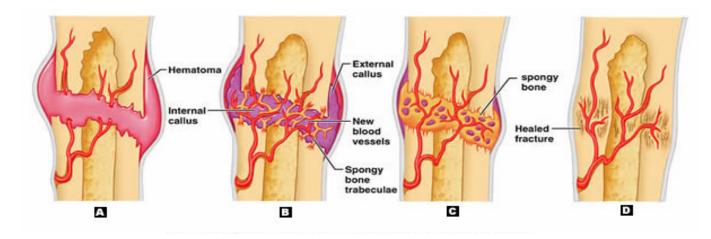
- Involves wounds whose edges are NOT close together (e.g. ulcers)
- Usually larger and more debris than incision wounds
- Much granulation tissue must form to cover the wounded area \rightarrow takes longer
- Wound Contraction
 - Process of the edges of a wounded area closing over a wound to reduce size
 - Mediated by myofibroblasts

Healing Major Tissues


- Connective Tissue
- Epithelial and Glandular Tissue
- Nervous Tissue
- Muscle Tissue

Connective Tissue Healing

- Some connective tissues have a limited blood supply
- Prolonged healing allows for re-injury \rightarrow may be more severe than initial injury
- Tendon / Ligament
 - Usually successful repairs when straight edges can be tightly sutured; scar tissue when irregular edges
 - Fibroblasts produce collagen- restore tensile strength
- Cartilage
 - Fibroblast produce scar tissue on surface- protective
 - Can lose some function
- Adipose
 - Adipocytes are replaced by special precursor cells when damaged/removed


Bone Healing

- Breaks must be reduced- bones positioned at (or close to) original position
- Movement restricted to allow healing (3 stages):
 - Clots and bone fragments must be removed from break area; osteoblasts (bone-forming cells) activated (4-5 days)
 - Osteoblasts lay down collagen-rich osteoid tissue in break area- the soft callus; Osteoid tissue is eventually "ossified" to form hard callus (3 weeks)
 - Hard callus is broken and re-formed by osteoclasts (bone-dissolving cells) to restore bone to its normal structure (months-years)

Stages in the Healing of a Bone Fracture

- Hematoma formation Torn blood vessels hemorrhage A mass of clotted blood (hematoma) forms at the fracture site Site becomes swollen, painful, and inflamed
 - Fibrocartilaginous callus forms
- Bony callus formation •
 - Bone callus begins 3-4 weeks after injury, and continues until firm union is formed 2-3 months later
- Bone remodeling
 - Excess material on the bone shaft exterior and in the medullary canal is removed
 - Compact bone is laid down to reconstruct shaft walls

D

А

В

С

Epithelial and Glandular Tissue Healing

- Epithelial Tissue
 - Labile tissue is able to regenerate, except respiratory surface
- Glandular Tissue
 - Ability to replaced with functional tissue varies by gland
 - Almost complete regeneration: liver
 - Limited regeneration: kidneys, parathyroid, adrenal medulla, and post. pituitary

Nervous Tissue Healing

- Neurons themselves do NOT go through mitosis after birth
- CNS:
 - Gliosis- Mitosis of neuroglial (supporting) cells
 - If cell body intact- initial regeneration of axons
 - May form scar-like masses in nervous tissue
- PNS:
 - Partial regeneration of axon if supporting tissue and Schwann cells (produce myelin) remain intact along neural pathway

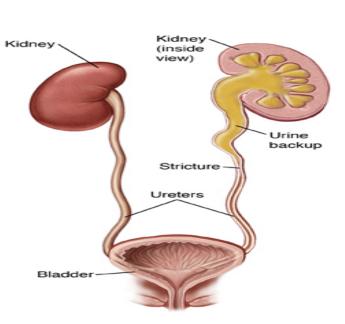
Muscle Tissue Healing

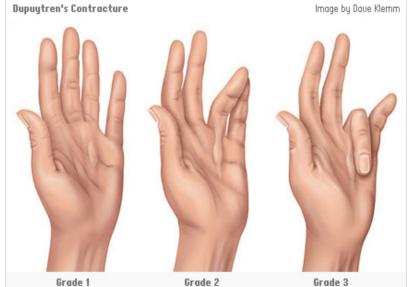
- Cardiac and skeletal can NOT be replaced
- Smooth muscle some regeneration
- Compensation cells increase in size and strength
- Hypertrophy Enhanced development of existing cells can "pick up the slack"

Complications in Healing

- Contracture
 - If damage is extensive newly formed collagen contracts (e.g. skin burn)
 - Allows for much less flexibility in tissues; limit mobility
 - Stricture Contraction in an important vessel / lumen lowering interior volume
- Adhesions
 - Regions where serous membranes improperly join together
 - o Often restricts movement in that area
- Dehiscence
 - The breaking open of a healing wound
 - Commonly seen in abdominal wounds (much internal pressure)
 - A dreaded surgical complication
 - #1 Risk: May also expose healing area to infectious microbes
 - #2 Risk: May cause herniation of the intestine through the wound loss of blood supply
 - Risk factors of dehiscence
 - Include age, collagen disorders, diabetes, obesity, poor knotting or grabbing of stitches, and trauma to the wound after surgery.

Complications in Healing


- Keloid Formation
 - Irregular masses of scar tissue form at site of injury (usually on skin)
 - Result from overproduction of collagen or overproduction of a growth factor (TGF- β)
- Proud Flesh
 - Overproduction of granulation tissue
 - Can protrude from wound and interfere with surface restoration
 - Often referred to as overgranulation tissue
- **Suture Complications**
 - Small puncture wounds stimulate epithelial tissue mitosis may cover suture
 - Carried off when sutures removed leaves scars


Requirements for Healing

- Clearance of debris from area
- Wound should be immobilized to allow tissues to repair/regenerate properly
- Adequate vasculature must form to deliver blood eventually
- Proper nutrients (vitamins, minerals) must be provided
 - Vitamin C- Required to convert amino acids into procollagen
 - Copper- Cofactor for enzyme that cross-links collagen molecules

Control and Regulation of Healing

- Growth should be orderly and limited to replace lost tissue
 - **Growth Factors** Promote growth
 - **Growth Inhibitors** Stop the growth when appropriate
 - Contact Inhibition- When dividing cells contact other dividing cells, mitosis stops

Growth Factors	Effects
Platelet derived growth	Stimulates collagenase, fibronectin and hyaluronic acid
factor	synthesis
Transforming growth	Promotes angiogenesis and collagen production
factor	
Vascular endothelial	Promotes angiogenesis during tissue hypoxia
growth factor	
Epidermal growth factor	Stimulates keratinocytes and fibroblast proliferation
Fibroblast growth factor	Promotes angiogenesis, granulation and epithelialisation
Interleukins	Chemotactic for neutrophils and fibroblasts
Colony stimulating factor	Stimulates granulocyte and macrophage proliferation
Keratinocyte growth	Stimulates keratinocyte migration, differentiation and
factor	proliferation