#### **Tissues** Dr. Mumaugh – Campbellsville University

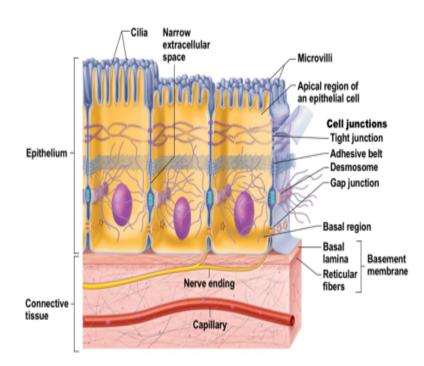
#### Tissues

- Cells work together in functionally related groups called *tissues*
- Tissue
  - A group of closely associated cells that perform related functions and are similar in structure

#### Four Basic Tissue Types and Basic Functions

- Epithelial tissue—covering
- Connective tissue—support
- Muscle tissue—movement
- Nervous tissue—control

#### **Epithelial Tissue**

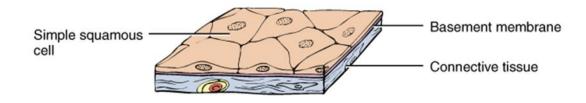

- Covers a body surface or lines a body cavity
- Forms parts of most glands
  - Functions of epithelia
    - Protection
    - Secretion
    - Absorption
    - Diffusion
    - Filtration
    - Sensory reception

#### **Special Characteristics of Epithelia**

- Cellularity
  - Cells separated by minimal extracellular material
- Specialized contacts
  - Cells joined by special junctions
- Polarity
  - · Cell regions of the apical surface differ from the basal surface

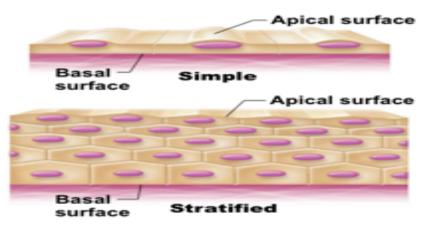
#### **Special Characteristics of Epithelia**

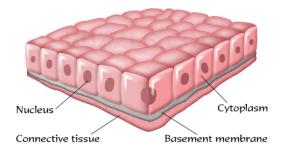
- Support by connective tissue
- Avascular but innervated
  - Epithelia receive nutrients from underlying connective tissue
- Regeneration
  - Lost cells are quickly replaced by cell division




# **Classifications of Epithelia**

- First name of tissue indicates number of cell layers
- Simple epithelia
  - Single layer of cells
  - Stratified epithelia
- Last name of tissue describes shape of cells
  - Squamous—cells are wider than tall (plate-like)
  - Cuboidal—cells are as wide as tall, like cubes
  - Columnar—cells are taller than they are wide, like columns


# Simple Squamous Epithelium


- Description—single layer; flat cells with disc-shaped nuclei
- Function
  - Passage of materials by passive diffusion and filtration
  - Secretes lubricating substances in serosae
- Location
  - Renal corpuscles
  - Alveoli of lungs
  - Lining of heart, blood, and lymphatic vessels
  - Lining of ventral body cavity (serosae)

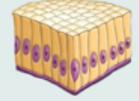


# Simple Cuboidal Epithelium

- Description
  - Single layer of cubelike cells with large, spherical central nuclei
- Function
  - Secretion and absorption
- Location
  - Kidney tubules, secretory portions of small glands, ovary surface






# Simple Columnar Epithelium

- Description—single layer of column-shaped (rectangular) cells with oval nuclei
  - Some bear cilia at their apical surface
  - May contain goblet cells
- Function
  - Absorption; secretion of mucus, enzymes, and other substances
  - Ciliated type propels mucus or reproductive cells by ciliary action
- Location
  - Nonciliated form
    - Lines digestive tract, gallbladder, ducts of some glands
  - Ciliated form
    - Lines small bronchi, uterine tubes, and uterus

# Pseudostratified Columnar Epithelium

- Description
  - All cells originate at basement membrane
  - Only tall cells reach the apical surface
  - May contain goblet cells and bear cilia
  - Nuclei lie at varying heights within cells
    - Gives false impression of stratification
- Function—secretion of mucus; propulsion of mucus by cilia
- Locations
  - Nonciliated type
    - Ducts of male reproductive tubes
    - Ducts of large glands
  - Ciliated variety
    - Lines trachea and most of upper respiratory tract

Description: Single layer of tall cells with round to oval nuclei; some cells bear cilia; layer may contain mucus-secreting unicellular glands (goblet cells).



Function: Absorption; secretion of mucus, enzymes, and other substances; ciliated type propels mucus (or reproductive cells) by ciliary action.

Location: Nonciliated type lines most of the digestive tract (stomach to anal canal), gallbladder, and excretory ducts of some glands; ciliated variety

lines small bronchi, uterine tubes, and some regions of



Description: Single layer of cells of different heights, some not reaching the free surface; nuclei seen at different levels; may contain mucus-secreting goblet cells and bear cilia.



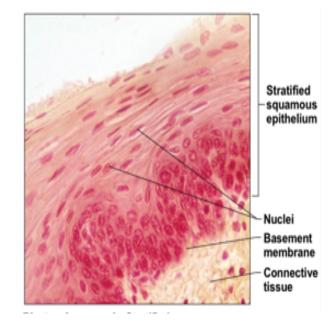
Function: Secretion, particularly of mucus; propulsion of mucus by ciliary action.

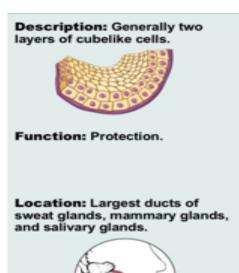
Location: Nonciliated type in male's sperm-carrying ducts and ducts of large glands; ciliated variety lines the trachea, most of the upper respiratory tract.

Trachea



### **Stratified Epithelia**


- Properties
  - Contain two or more layers of cells
  - Regenerate from below (basal layer)
  - Major role is protection
  - Named according to shape of cells at apical layer
- Description
  - Many layers of cells are squamous in shape
  - Deeper layers of cells appear cuboidal or columnar
  - Thickest epithelial tissue
    - Adapted for protection from abrasion


#### **Stratified Squamous Epithelium**

- Two types—keratinized and nonkeratinized
  - Keratinized
    - Location—epidermis
    - Contains the protective protein keratin
    - Waterproof
    - Surface cells are dead and full of keratin
  - Nonkeratinized
    - Forms moist lining of body openings
- Function—Protects underlying tissues in areas subject to abrasion
- Location
  - Keratinized—forms epidermis
  - Nonkeratinized—forms lining of mucous membranes
    - Esophagus
    - Mouth
    - Anus
    - Vagina
    - Urethra

#### **Stratified Cuboidal Epithelium**

- Description—generally two layers of cube-shaped cells
- Function—protection
- Location
  - Forms ducts of
    - Mammary glands
    - Salivary glands
    - Largest sweat glands





# **Stratified Columnar Epithelium**

- Description—several layers; basal cells usually cuboidal; superficial cells elongated
- Function—protection and secretion
- Location
  - Rare tissue type
  - Found in male urethra and large ducts of some glands

# **Transitional Epithelium**

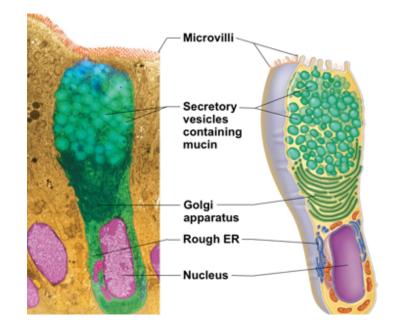
- Description
  - Has characteristics of stratified cuboidal and stratified squamous
  - Superficial cells dome-shaped when bladder is relaxed, squamous when full
- Function—permits distension of urinary organs when they are filled with urine
- Location—epithelium of urinary bladder, ureters, proximal urethra

#### Glands

- Endocrine glands
  - o Ductless glands that secrete directly into surrounding tissue fluid
  - Produce messenger molecules called hormones
- Exocrine glands
  - Ducts carry products of exocrine glands to epithelial surface
  - Include the following diverse glands:
- Mucus-secreting glands
- Sweat and oil glands
- Salivary glands
- Liver and pancreas

# Unicellular Exocrine Glands (The Goblet Cell)

- Goblet cells produce mucin
  - $\circ \quad \text{Mucin} + \text{water} \rightarrow \text{mucus}$
  - Protects and lubricates many internal body surfaces
  - Goblet cells are a unicellular exocrine gland

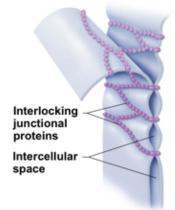

Description: Several cell layers; basal cells usually cuboidal; superficial cells elongated and columnar.

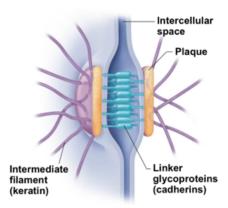


Function: Protection; secretion.

Location: Rare in the body; small amounts in male urethra and in large ducts of some glands.







# Lateral Surface Features—Cell Junctions

- Factors binding epithelial cells together
  - Adhesion proteins link plasma membranes of adjacent cells
  - Contours of adjacent cell membranes
  - Special cell junctions
- Tight junctions (zona occludens)—close off intercellular space
  - Found at *apical region* of most epithelial tissues types
  - Some proteins in plasma membrane of adjacent cells are fused
  - Prevent certain molecules from passing between cells of epithelial tissue
- Adhesive belt junctions (zonula adherens)—anchoring junction
  - Transmembrane linker proteins attach to actin microfilaments of the cytoskeleton and bind adjacent cells
    - With tight junctions, these linker proteins form the tight junctional complex around apical lateral borders of epithelial tissues
- Desmosomes—main junctions for binding cells together
  - Scattered along abutting sides of adjacent cells
  - Cytoplasmic side of each plasma membrane has a plaque
    - Plaques are joined by linker proteins
- Intermediate filaments extend across the cytoplasm and anchor at desmosomes on opposite side of the cell
- Are common in cardiac muscle and epithelial tissue
- Gap junctions—passageway between two adjacent cells
  - These let small molecules move directly between neighboring cells
  - Cells are connected by hollow cylinders of protein
  - Function in intercellular communication

# **Basal Feature: The Basal Lamina**

- Located at the boundary between the epithelium and connective tissue
- Noncellular supporting sheet between the epithelial tissue and the connective tissue deep to it
- Functions
  - Acts as a *selective filter*, determining which molecules from capillaries enter the epithelium
  - Acts as *scaffolding* along which regenerating epithelial tissue cells can migrate
  - Basal lamina and reticular layers of the underlying connective tissue deep to it form the basement membrane





# **Epithelial Surface Features**

- Apical surface features
  - Microvilli—fingerlike extensions of plasma membrane
  - Have a core of actin filaments that stiffen the microvillus
  - Abundant in kidney tubules and small intestine
  - Maximize surface across which small molecules enter or leave cells
- Apical surface features
  - Cilia—whiplike, highly motile extensions of apical surface membranes
    - Contain a core of microtubules held together by cross-linking and radial proteins
    - Microtubules arranged in pairs called doublets
    - Movement is generated when adjacent doublets grip each other with the motor protein dynein
  - Cilia originate as microtubules assemble around centrioles

#### **Connective Tissue**

- Most diverse and abundant tissue
- Main classes of connective tissue
  - Connective tissue proper
  - Cartilage
  - Bone tissue
  - Blood
- Important functions of connective tissue types
  - Form basis of the skeleton
  - Store and carry nutrients
  - Surround blood vessels and nerves
  - Lead fight against infection

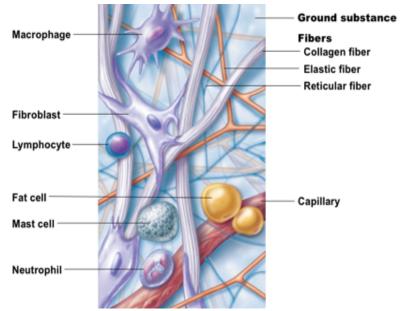
#### **Special Characteristics of Connective Tissue**

- Few cells, abundant extracellular matrix
- Extracellular matrix is composed of
  - Ground substance
  - Fibers
- Extracellular matrix is produced by cells of the connective tissue
- Common embryonic origin is mesenchyme

# **Structural Elements of Connective Tissue**

- · Connective tissues differ in structural properties
- Differences in types of cells
- Differences in composition of extracellular matrix
- However, connective tissues all share structural elements
- Loose areolar connective tissue
  - Will illustrate connective tissue features

# Structural Elements of Connective Tissue - Cells


- Primary cell type of connective tissues produces the extracellular matrix
  - Fibroblasts
    - In connective tissue proper
    - Make protein subunits
  - Chondroblasts secrete matrix in cartilage
  - Osteoblasts secrete matrix in bone
- · Cells in blood are an exception-they do not produce the plasma matrix of blood
- Many other important cell types are found in connective tissue
- Areolar connective tissue contains:
  - Fat cells
  - White blood cells
  - Mast cells

#### **Structural Elements of Connective Tissue - Fibers**

- Extracellular matrix is composed of fibers and ground substance
- Fibers function in support and also have unique properties
- Collagen fibers—strongest; resist tension
- Reticular fibers—bundles of special type of cartilage
- Elastic fibers—contain elastin
- Recoil after stretching

#### **Structural Elements of Connective Tissue - Ground substance**

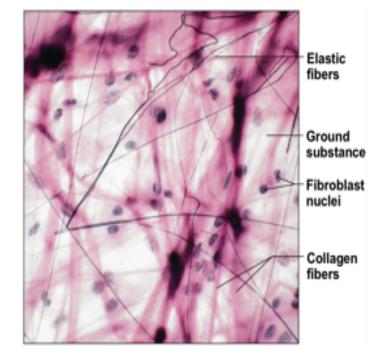
- Is produced by primary cell type of the tissue
- Is usually gel-like substance consisting of:
- Cushions and protects body structures
- Holds tissue fluid
- Blood is an exception
  - Plasma is not produced by blood cells



#### **Major Functions of Connective Tissue**

- Structure of areolar connective tissue reflects its functions
  - Support and binding of other tissues
  - Holding body fluids (interstitial fluid  $\rightarrow$  lymph)
  - Defending body against infection
  - Storing nutrients as fat

#### **Connective Tissue Proper**


- Has two subclasses
  - Loose connective tissue
    - Areolar, adipose, and reticular
  - Dense connective tissue
    - Dense irregular, dense regular, and elastic

#### Areolar Connective Tissue—A Model Connective Tissue

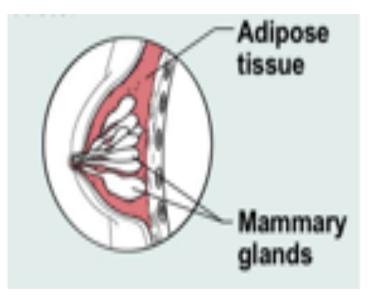
- Underlies epithelial tissue
- Surrounds small nerves and blood vessels
- Has structures and functions shared by other connective tissues
- Borders all other tissues in the body

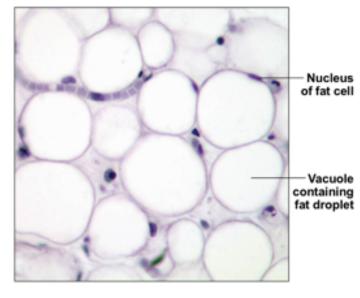
#### **Areolar Connective Tissue**

- Fibers provide support
  - Three types of protein fibers in extracellular matrix
    - Collagen fibers
    - Reticular fibers
    - Elastic fibers
- Fibroblasts produce these fibers
- Description
  - Gel-like matrix with all three fiber types
  - Cells of areolar connective tissue
    - Fibroblasts, macrophages, mast cells, and white blood cells
  - Function
    - Wraps and cushions organs
    - Holds and conveys tissue fluid (interstitial fluid)
    - Important role in inflammation
- Locations
  - o Widely distributed under epithelia
  - Packages organs
  - Surrounds capillaries



#### Areolar Connective Tissue - continued


- Tissue fluid (interstitial fluid)
  - Watery fluid occupying extracellular matrix
  - Tissue fluid derives from blood
- Ground substance
  - Viscous, spongy part of extracellular matrix
  - Consists of sugar and protein molecules
  - Made and secreted by fibroblasts
  - Main battlefield in fight against infection
- Defenders gather at infection sites
  - Macrophages
  - Plasma cells
  - Mast cells
  - White blood cells


#### Adipose Tissue

- Description
  - Closely packed adipocytes
  - Have nucleus pushed to one side by fat droplet
  - Richly vascularized
- Function
  - Provides reserve food fuel
  - Insulates against heat loss
  - Supports and protects organs
- Location
  - Under skin
  - Around kidneys
  - Behind eyeballs, within abdomen, and in breasts
  - Hypodermis

#### Adipose Connective Tissue - Brown Adipose Tissue

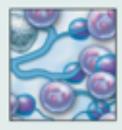
- Produces heat
- Occurs in babies to aid thermoregulation
- Has been found in adults
  - Between scapulae
  - Sides of anterior neck
  - Anterior abdominal wall
- Richly vascularized; cells contain many lipid droplets and numerous mitochondria





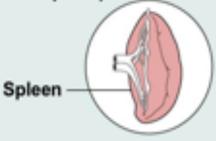
# **Reticular Connective Tissue**

- Description
- Network of reticular fibers in loose ground substance
- Function
  - Forms a soft, internal skeleton (stroma)
  - Supports other cell types
- Location Lymph nodes, bone marrow, and spleen


# **Dense Connective Tissue**

- Three types of dense connective tissue
  - Dense irregular connective tissue
  - Dense regular connective tissue
  - Elastic connective tissue
- Dense connective tissues
  - Resist strong pulling forces
  - Have more collagen than areolar connective tissue

#### Dense Irregular Connective Tissue


- Description
  - Collagen fibers are thick and irregularly arranged
  - Contains some elastic fibers and fibroblasts
- Function
  - Withstands tension
  - Provides structural strength
- Location
  - Dermis of skin
  - Submucosa of digestive tract
  - Fibrous capsules of joints
  - Capsules surrounding organs, such as kidneys, bones, and lymph nodes

Description: Network of reticular fibers in a typical loose ground substance; reticular cells lie on the network.



Function: Fibers form a soft internal skeleton (stroma) that supports other cell types including white blood cells, mast cells, and macrophages.

Location: Lymphoid organs (lymph nodes, bone marrow, and spleen).



#### **Dense Regular Connective Tissue**

- Description
  - Collagen fibers are parallel to the direction of pull
  - Fibroblasts are located between collagen fibers
  - Contains few elastic fibers
  - Has great tensile strength
  - Poorly vascularized
  - Forms fascia
- Function
  - Attaches muscle to bone
  - Attaches bone to bone
  - Withstands great stress in one direction
- Location
  - Tendons and ligaments
  - Aponeuroses
  - Fascia around muscles

#### **Elastic Connective Tissue**

- Description
  - Elastic fibers predominate
- Function
  - Allows recoil after stretching
- Location
  - Within walls of arteries
  - In certain ligaments
  - Surrounding bronchial tubes

#### Cartilage

- All cartilages have similar structural components
  - Firm, flexible tissue
  - Contains no blood vessels or nerves
  - Matrix contains up to 80% water
  - Cell type is the chondrocyte
  - Chondroblasts are immature cartilage cells
    - Secrete matrix during cartilage growth
- Three types of cartilage
  - Hyaline cartilage
  - Elastic cartilage
  - Fibrocartilage
- Each cartilage has specialized functions

Description: Primarily parallel collagen fibers; a few elastic fibers; major cell type is the fibroblast.



Function: Attaches muscles to bones or to muscles; attaches bones to bones; withstands great tensile stress when pulling force is applied in one direction.

Location: Tendons, most ligaments, aponeuroses.



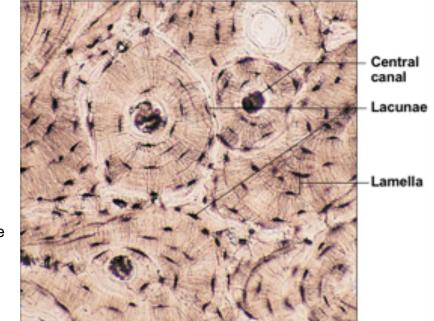
# **Hyaline Cartilage**

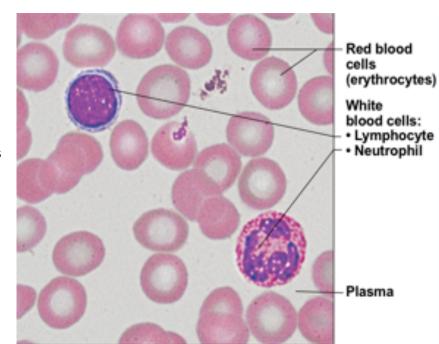
- Description
  - Imperceptible collagen fibers (hyaline = glassy)
  - Chodroblasts produce matrix
  - Chondrocytes
    - Are mature cartilage cells
    - Lie within lacunae
- Function
  - Supports and reinforces
  - Resilient cushion
  - Resists repetitive stress
- Location
  - Fetal skeleton
  - Ends of long bones
  - Costal cartilage of ribs
  - Cartilages of nose, trachea, and larynx

# **Elastic Cartilage**

- Description
  - Similar to hyaline cartilage
  - More elastic fibers in matrix
- Function
  - Maintains shape of structure
  - Allows great flexibility
- Location
  - Supports external ear
  - Epiglottis

#### Fibrocartilage


- Description
  - Matrix similar but less firm than hyaline cartilage
  - Thick collagen fibers predominate
- Function
  - Tensile strength and ability to absorb compressive shock
- Location
  - Intervertebral discs
  - Pubic symphysis
  - Discs of knee joint

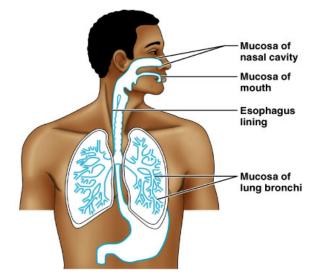

#### **Bone Tissue**

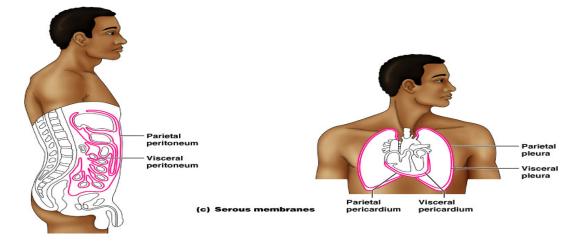
- Description
  - Bone matrix contains
    - Inorganic calcium salts
    - Abundance of collagen fibers
    - Osteoblasts secrete collagen fibers and ground substance of the matrix
    - Osteocytes—mature bone cells in lacunae
  - Well vascularized
- Function
  - Supports and protects organs
  - Provides levers and attachment site for muscles
  - Stores calcium and other minerals
  - Stores fat
  - Marrow is site for blood cell formation
- Location Bones

#### **Blood Tissue**

- An atypical connective tissue
- Develops from mesenchyme
- Consists of cells surrounded by nonliving matrix
- Description
  - Red and white blood cells in a fluid matrix
- Function
  - Transport of respiratory gases, nutrients, and wastes
- Location Within blood vessels







#### **Covering and Lining Membranes**

- Combine epithelial tissues and connective tissues
- Cover broad areas within body
- Consist of epithelial sheet plus underlying connective tissue

#### **Three Types of Membranes**

- Cutaneous membrane
  - ∘ Skin
- Mucous membranes
  - Lines hollow organs that open to surface of body
- Serous membrane
  - Simple squamous epithelium called mesothelium lying on areolar connective tissue
  - Lines closed cavities
    - Pleural cavity
    - Peritoneal cavity
    - Pericardial cavity
  - Produces serous fluid





#### **Muscle Tissue**

- Is a composite tissue
  - · Contains areolar connective tissue in addition to muscle tissue
- · Most muscle cells are called muscle fibers
- Cells contain myofilaments
  - Myofilaments contain actin and myosin
  - Three types of muscle tissue
    - Skeletal muscle tissue
    - Cardiac muscle tissue
    - Smooth muscle tissue

#### Skeletal Muscle Tissue

- Description
  - Long, cylindrical cells
  - Multinucleate
  - Obvious striations
- Function
  - Voluntary movement
  - Manipulation of environment
  - Facial expression
- Location
  - Skeletal muscles attached to bones (occasionally to skin)

# **Cardiac Muscle Tissue**

- Description
  - Branching cells, striated
  - Cells interdigitate at intercalated discs
- Function
  - Contracts to propel blood into circulatory system
- Location Walls of heart

# Smooth Muscle Tissue

- Description
  - Spindle-shaped cells with central nuclei
  - Arranged closely to form sheets
  - No striations
- Function
  - Propels substances along internal passageways
  - Involuntary control
- Location Walls of hollow organs

#### **Nervous Tissue**

- Description
- Main components are brain, spinal cord, and nerves
- Contains two types of cells
  - Neurons
    - Generate and conduct nerve impulses
  - Neuroglia
    - Supporting cells that nourish, insulate, and protect neurons
- Function
  - Transmit electrical signals from sensory receptors to effectors
- · Location Brain, spinal cord, and nerves

Description: Long, cylindrical, multinucleate cells; obvious striations.



Function: Voluntary movement; locomotion; manipulation of the environment; facial expression.

Location: In skeletal muscles attached to bones or occasionally to skin.



Description: Spindle-shaped cells with central nuclei; no striations; cells arranged closely to form sheets.



Function: Propels substances or objects (foodstuffs, urine, a baby) along internal passageways; involuntary control.

Location: Mostly in the walls of hollow organs.



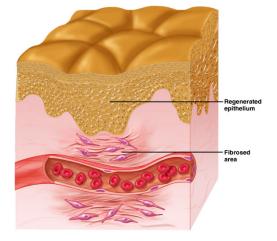
# **Tissue Response to Injury**

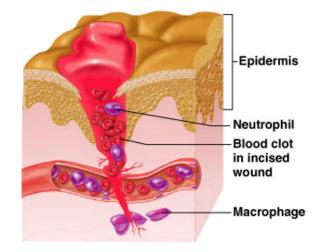
- Inflammatory response
  - Nonspecific, local response
  - Limits damage to injury site
- Immune response
  - Takes longer to develop and very specific
  - Destroys particular microorganisms at site of infection

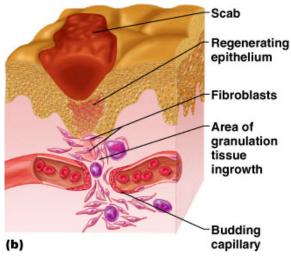
#### Inflammation

- Acute inflammation
  - Heat
  - Redness
  - Swelling
  - Pain
  - Chemicals signal nearby blood vessels to dilate
- Histamine increases permeability of capillaries

#### Inflammation


- Edema—accumulation of fluid
  - Helps dilute toxins secreted by bacteria
  - Brings oxygen and nutrients from blood
  - Brings antibodies from blood to fight infection


#### Repair


- Regeneration
  - Replacement of destroyed tissue with same type of tissue
- Fibrosis
  - Proliferation of scar tissue
- Organization
  - Clot is replaced by granulation tissue

#### The Tissues Throughout Life

- At the end of second month of development:
  - Primary tissue types have appeared
  - Major organs are in place
- Adulthood
  - Only a few tissues regenerate
  - Many tissues still retain populations of stem cells







# **Capacity for Regeneration**

- Good to excellent:
  - Epithelial tissue, bone connective tissue, areolar connective tissue, dense irregular connective tissue, and blood-forming connective tissue
- Moderate:
  - Smooth muscle tissue, dense regular connective tissue

# **Capacity for Regeneration**

- Weak:
  - Skeletal muscle tissue, cartilage
- None or almost none:
  - Cardiac muscle tissue, nervous tissue

# The Tissues Throughout Life

- With increasing age:
  - Epithelia thin
  - Collagen decreases
  - Bones, muscles, and nervous tissue begin to atrophy
  - Poor nutrition and poor circulation lead to poor health of tissues